Safety Manual

VEGABAR series 80

Two-wire 4 ... 20 mA/HART and Secondary sensors With SIL qualification

Document ID: 48369

Contents

1	Docu	ment language	3
2	Scop 2.1 2.2 2.3	e	4 4
3	Plann 3.1 3.2 3.3	ing	6 6
4	Safet 4.1 4.2 4.3 4.4 4.5	y-related characteristics	7 8 0 1
5	Setup 5.1 5.2	General information	3
6	Diagr 6.1 6.2	nostics and servicing	5
7	Proof 7.1 7.2 7.3	test 10 General information 10 Test 1: Without checking the process variable 10 Test 2: With check of the process variable 11	6 6
8	Арре	ndix A: Test report	8
9	Appendix B: Term definitions		
10	Supp	lement C: SIL conformity	0

1 Document language

DE	Das vorliegende <i>Safety Manual</i> für Funktionale Sicherheit ist verfügbar in den Sprachen Deutsch, Englisch, Französisch und Russisch.
EN	The current <i>Safety Manual</i> for Functional Safety is available in German, English, French and Russian language.
FR	Le présent <i>Safety Manual</i> de sécurité fonctionnelle est disponible dans les langues suivantes: allemand, anglais, français et russe.
RU	Данное руководство по функциональной безопасности Safety Manual имеется на немецком, английском, французском и русском языках.

2 Scope

2.1 Instrument version

This safety manual applies to pressure transmitters

VEGABAR 81, 82, 83, 86, 87

VEGABAR 81, 82, 83, 86, 87 Secondary-Sensor

Electronics types:

- Two-wire 4 ... 20 mA/HART with SIL qualification
- Two-wire 4 ... 20 mA/HART with SIL qualification and supplementary electronics "Additional current output 4 ... 20 mA"
- Secondary electronics for electronic differential pressure with SIL qualification

Valid versions:

- from HW Ver 1.0.0
- from SW Ver 1.0.0
- Secondary electronics from HW Ver 1.0.0

The climate-compensated versions are excluded from safety-relevant applications!

2.2 Application area

The pressure transmitter can be used in a safety-related system according to IEC 61508 in the modes *low demand mode* or *high demand mode* for the measurement of the following process variables:

- Process pressure measurement
- Hydrostatic level measurement

With Secondary sensor:

- Differential pressure measurement
- Flow measurement
- Density measurement
- Interface measurement

Due to the systematic capability SC3 this is possible up to:

- SIL2 in single-channel architecture
- SIL3 in multiple channel architecture

The following interface can be used to output the measured value:

Current output: 4 ... 20 mA

SIL

The following interfaces are only permitted for parameter adjustment and for informative use:

- HART
- Display and adjustment module PLICSCOM (also via Bluetooth)
- VEGACONNECT (also via Bluetooth)
- Current output II ¹⁾
- ¹⁾ Only with instrument version with supplementary electronics "Additional current output 4 ... 20 mA".

2.3 SIL conformity

The SIL confirmity was judged and certified independently by *TÜV Rheinland* according to IEC 61508:2010 (Ed.2) (verification documents see " *Supplement*").

The certificate is valid for the entire service life of all instruments that were sold before the certificate expired!

Safety function

3 Planning

3.1 Safety function

The transmitter generates on its current output a signal between 3.8 mA and 20.5 mA corresponding to the process variable. This analogue signal is fed to a connected processing system to monitor the following conditions:

- Exceeding a defined limit value of the process variable
- Falling below a defined limit value of the process variable
- Monitoring of a defined range of the process variable

Safety tolerance For the design of the safety function, the following aspects must be taken into account with regard to the tolerances:

- Due to undetected failures in the range between 3.8 mA and 20.5 mA, an incorrect output signal can be generated which deviates from the real measured value by up to 2 %
- · Due to the special application conditions, increased measurement deviations can be caused (see Technical data in the operating instructions)

3.2 Safe state

Safe state

The safe state of the current output depends on the safety function and the characteristics set on the sensor.

Character- istics	Monitoring upper limit val- ue	Monitoring lower limit value
4 20 mA	Output current ≥ Switching point	Output current ≤ Switching point
20 4 mA	Output current ≤ Switching point	Output current ≥ Switching point

Fault signals in case of malfunction

Possible fault currents:

- ≤ 3.6 mA ("fail low")
 - > 21 mA ("fail high")

Prerequisites for operation 3.3

Instructions and restric-• The measuring system should be used appropriately taking pressure, temperature, density and chemical properties of the medium into account. The application-specific limits must be observed.

- The specifications according to the operating instructions manual. particularly the current load on the output circuits, must be kept within the specified limits
- Existing communication interfaces (e.g. HART, USB) are not used for transmission of the safety-relevant measured value
- The instructions in chapter "Safety-related characteristics", paragraph " Supplementary information" must be noted
- All parts of the measuring chain must correspond to the planned Safety Integrity Level (SIL)"

48369-EN-210114

tions

4 Safety-related characteristics

4.1 Characteristics acc. to IEC 61508 for process pressure measurement or hydrostatic level measurement

VEGABAR 82, 83, 86, 87

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ²⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре В
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTBF 3)	0.50 x 10 ⁶ h (57 years)
Diagnostic test interval 4)	< 30 min

Failure rates

λ _s	$\lambda_{_{DD}}$	λ_{DU}	λ _H	λ	λ_{AD}
0 FIT	1121 FIT	44 FIT	9 FIT	59 FIT	34 FIT
PFD _{AVG}		0.037 x 10 ⁻²		(T1 = 1 year)	
PFD _{AVG}		0.054 x 10 ⁻² (T1		(T1 = 2 years	s)
PFD _{AVG}		0.106 x 10 ⁻²		(T1 = 5 years	s)
PFH		0.044 x 10 ⁻⁶	1/h		

Proof Test Coverag (PTC)

Test type 5)	Remaining failure rate of danger- ous undetected failures	PTC
Test 1	21 FIT	52 %
Test 2	2 FIT	95 %

VEGABAR 81

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture 6)
Hardware fault tolerance	HFT = 0
Instrument type	Туре В

²⁾ Homogeneous redundancy possible, because systematic capability SC3.

³⁾ Including errors outside the safety function.

⁴⁾ Time during which all internal diagnoses are carried out at least once.

⁵⁾ See section "Proof test".

⁶⁾ Homogeneous redundancy possible, because systematic capability SC3.

Parameter	Value
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTBF 7)	0.57 x 10 ⁶ h (65 years)
Diagnostic test interval 8)	< 30 min

Failure rates

λ _s	$\lambda_{_{DD}}$	λ _{DU}	λ _H	λ	$\lambda_{_{AD}}$
0 FIT	981 FIT	77 FIT	9 FIT	59 FIT	34 FIT

PFD _{AVG}	0.065 x 10 ⁻²	(T1 = 1 year)
PFD _{AVG}	0.096 x 10 ⁻²	(T1 = 2 years)
PFD _{AVG}	0.188 x 10 ⁻²	(T1 = 5 years)
PFH	0.077 x 10 ⁻⁶ 1/h	

Proof Test Coverag (PTC)

Test type 9)	Remaining failure rate of danger- ous undetected failures	PTC
Test 1	56 FIT	28 %
Test 2	2 FIT	97 %

4.2 Characteristics acc. to IEC 61508 for applications with Secondary sensor

Device combination consisting of VEGABAR 82, 83, 86 or 87

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ¹⁰⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре В
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTBF 11)	0.39 x 10 ⁶ h (44 years)
Diagnostic test interval 12)	< 30 min

⁷⁾ Including errors outside the safety function.

⁸⁾ Time during which all internal diagnoses are carried out at least once.

⁹⁾ See section "Proof test".

- ¹⁰⁾ Homogeneous redundancy possible, because systematic capability SC3.
- ¹¹⁾ Including errors outside the safety function.
- ¹²⁾ Time during which all internal diagnoses are carried out at least once.

Failure rates

λ _s	λ_{DD}	λ_{DU}	λ _H	λ	λ_{AD}
0 FIT	1406 FIT	63 FIT	9 FIT	59 FIT	34 FIT
PFD _{AVG}		0.054 x 10 ⁻²		(T1 = 1 year)	
PFD _{AVG}		0.079 x 10 ⁻²		(T1 = 2 years	3)
PFD _{AVG}		0.154 x 10 ⁻²		(T1 = 5 years	5)
PFH		0.063 x 10⁻⁶ 1/h			

Proof Test Coverag (PTC)

Test type ¹³⁾	Remaining failure rate of danger- ous undetected failures	PTC
Test 1	40 FIT	36 %
Test 2	3 FIT	95 %

Device combination consisting of a VEGABAR 81 and a VEGABAR 82, 83, 86 or 87

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ¹⁴⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре В
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTBF ¹⁵⁾	0.43 x 10 ⁶ h (50 years)
Diagnostic test interval 16)	< 30 min

Failure rates

λ _s	$\lambda_{_{DD}}$	λ _{DU}	λ _H	λ	λ_{AD}
0 FIT	1266 FIT	97 FIT	9 FIT	59 FIT	34 FIT
PFD _{AVG}		0.082 x 10 ⁻²		(T1 = 1 year)	
PFD _{AVG}		0.120 x 10 ⁻²		(T1 = 2 years)	
PFD _{AVG}		0.235 x 10 ⁻²		(T1 = 5 years)	
PFH		0.097 x 10 ⁻⁶ 1/h			

¹³⁾ See section "Proof test".

- ¹⁴⁾ Homogeneous redundancy possible, because systematic capability SC3.
- ¹⁵⁾ Including errors outside the safety function.

¹⁶⁾ Time during which all internal diagnoses are carried out at least once.

Proof Test Coverag (PTC)

Test type 17)	Remaining failure rate of danger- ous undetected failures	РТС
Test 1	75 FIT	22 %
Test 2	3 FIT	97 %

Device combination consisting of VEGABAR 81

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ¹⁸⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре В
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTBF 19)	0.49 x 10 ⁶ h (56 years)
Diagnostic test interval 20)	< 30 min

Failure rates

λ _s	$\lambda_{_{DD}}$	$\lambda_{_{DU}}$	λ _H	λ	$\lambda_{_{AD}}$
0 FIT	1124 FIT	132 FIT	9 FIT	59 FIT	34 FIT
PFD _{AVG}		0.111 x 10 ⁻²		(T1 = 1 year)	
PFD _{AVG}		0.163 x 10 ⁻²		(T1 = 2 years	5)
PFD _{AVG}		0.320 x 10 ⁻²		(T1 = 5 years)	
PFH 0.13		0.132 x 10 ⁻⁶	1/h		

Proof Test Coverag (PTC)

Test type ²¹⁾	Remaining failure rate of danger- ous undetected failures	PTC
Test 1	110 FIT	16 %
Test 2	4 FIT	97 %

4.3 Characteristics acc. to ISO 13849-1 for process pressure measurement or hydrostatic level measurement

The transmitter has been manufactured and verified using principles that demonstrate its suitability and reliability for safety-related applications. It can therefore be considered a "*proven component*" according to DIN EN ISO 13849-1.

- ¹⁸⁾ Homogeneous redundancy possible, because systematic capability SC3.
- ¹⁹⁾ Including errors outside the safety function.
- ²⁰⁾ Time during which all internal diagnoses are carried out at least once.
- ²¹⁾ See section "Proof test".

¹⁷⁾ See section "Proof test".

Derived from the safety-related characteristics, the following figures result according to ISO 13849-1 (safety of machinery): ²²⁾

VEGABAR 82, 83, 86, 87

Parameter	Value
MTTFd	90 years
DC	97 %
Performance Level	4.35 x 10 ⁻ ⁸ 1/h

VEGABAR 81

Parameter	Value
MTTFd	98 years
DC	93 %
Performance Level	7.75 x 10 ⁻⁸ 1/h

4.4 Characteristics acc. to ISO 13849-1 for applications with Secondary sensor

The transmitter has been manufactured and verified using principles that demonstrate its suitability and reliability for safety-related applications. It can therefore be considered a "*proven component*" according to DIN EN ISO 13849-1.

Derived from the safety-related characteristics, the following figures result according to ISO 13849-1 (safety of machinery): $^{23)}$

Device combination consisting of VEGABAR 82, 83, 86 or 87

Parameter	Value
MTTFd	73 years
DC	96 %
Performance Level	6.33 x 10 ⁻⁸ 1/h

Device combination consisting of a VEGABAR 81 and a VEGABAR 82, 83, 86 or 87

Parameter	Value
MTTFd	78 years
DC	93 %
Performance Level	9.72 x 10 ⁻⁸ 1/h

Device combination consisting of VEGABAR 81

Parameter	Value
MTTFd	84 years
DC	90 %
Performance Level	1.32 x 10 ⁻⁷ 1/h

²²⁾ ISO 13849-1 was not part of the certification of the instrument.

²³⁾ ISO 13849-1 was not part of the certification of the instrument.

	4.5 Supplementary information
Determination of the failure rates	The failure rates of the instruments were determined by an FMEDA according to IEC 61508. The calculations are based on failure rates of the components according to SN 29500 :
	All figures refer to an average ambient temperature of 40 $^{\circ}$ C (104 $^{\circ}$ F) during the operating time. For higher temperatures, the values should be corrected:
	 Continuous application temperature > 50 °C (122 °F) by factor 1.3 Continuous application temperature > 60 °C (140 °F) by factor 2.5
	Similar factors apply if frequent temperature fluctations are expected.
Assumptions of the FMEDA	 The failure rates are constant. Take note of the useful service life of the components according to IEC 61508-2. Multiple failures are not taken into account Wear on mechanical parts is not taken into account Failure rates of external power supplies are not taken into account The environmental conditions correspond to an average industrial environment
Calculation of PFD _{AVG}	The values for PFD_{AVG} specified above were calculated as follows for a 10o1 architecture:
	$PFD_{AVG} = \frac{PTC \times \lambda_{DU} \times T1}{2} + \lambda_{DD} \times MTTR + \frac{(1 - PTC) \times \lambda_{DU} \times LT}{2}$
	Parameters used:
	• T1 = Proof Test Interval
	 PTC = 90 % LT = 10 years
	• MTTR = 8 h
Boundary conditions re- lating to the configuration	A connected control and processing unit must have the following properties:
of the processing unit	• The failure signals of the measuring system are judged according
	 to the idle current principle " <i>fail low</i>" and " <i>fail high</i>" signals are interpreted as a failure, where- upon the safe state must be taken on
	If this is not the case, the respective percentages of the failure rates must be assigned to the dangerous failures and the values stated in chapter <i>Safety-related characteristics</i> " redetermined!
Multiple channel archi- tecture	Due to the systematic capability SC3, this instrument can also be used in multiple channel systems up to SIL3, also with a homogene- ously redundant configuration.
	The safety-related characteristics must be calculated especially for the selected structure of the measuring chain using the stated failure rates. In doing this, a suitable Common Cause Factor (CCF) must be considered (see IEC 61508-6, appendix D).

Tools

5 Setup

5.1 General information

Mounting and installation

Take note of the mounting and installation instructions in the operating instructions manual.

Setup must be carried out under process conditions.

5.2 Instrument parameter adjustment

The following adjustment units are permitted for parameterization of the safety function:

- Display and adjustment module
- The DTM suitable for VEGABAR 80 in conjunction with an adjustment software according to the FDT/DTM standard, e. g. PACTware
- The device description EDD suitable for VEGABAR 80

The parameter adjustment is described in the operating instructions manual.

SIL

Wireless connection is also possible with existing Bluetooth function.

The documentation of the device settings is only possible with the full version of the DTM Collection.

Safety-relevant param- eters	For protection against unwanted or unauthorzed adjustment, the set parameters must be protected against unauthorized access. For this reason, the instrument is shipped in locked condition. The PIN in delivery status is "0000".
	The default values of the parameters are listed in the operating instructions. When shipped with customer-specific parameter settings, the instrument is accompanied by a list of the values differing from the default values.
	By means of the serial number this list can also be downloaded at " <u>www.vega.com</u> ", " <i>Instrument search (serial number)</i> ".
Safe parameterization	To avoid or detect possible errors during parameter adjustment for unsafe operating environments, a verification procedure is used that allows the safety-relevant parameters to be checked.
	Parameter adjustment proceeds according to the following steps:
	Unlock adjustment
	Change parametersLock adjustment and verify modified parameters
	The exact process is described in the operating instructions.
SIL	Wireless connection is also possible with existing Bluetooth function.
SIL	The instrument is shipped in locked condition!
SIL	For verification, all modified, safety-relevant and non safety-relevant parameters are shown.

48369-EN-210114

The verification texts are displayed either in German or, when any other menu language is used, in English.

Unsafe device status

Warning:

When adjustment is unlocked, the safety function must be considered as unreliable. This applies until the parameters are verified and the adjustment is locked again. If the parameter adjustment process is not carried out completely, the device statuses described in the operating instructions must be taken into consideration.

If necessary, you must take other measures to maintain the safety function.

Instrument reset

Warning:

In case a reset to " *Delivery status*" or " *Basic setting*" is carried out, all safety-relevant parameters must be checked or set anew.

6 Diagnostics and servicing

6.1 Behaviour in case of failure

Internal diagnosis	The instrument permanently monitored by an internal diagnostic system. If a malfunction is detected, a fault signal will be output on the safety-relevant output (see section " <i>Safe status</i> ").	
	The diagnosis interval is specified in chapter " <i>Safety-related charac-teristics</i> ".	
Error messages in case of malfunction	A fault message coded according to the type of fault is output. The fault messages are listed in the operating instructions.	
SIL	If failures are detected, the entire measuring system must be shut down and the process held in a safe state by other measures.	
	The occurrence of a failure must be reported to the manufacturer (including a description of the fault and whether it is a dangerous, undetected failure). The device must be returned to the manufacturer for examination.	
	6.2 Repair	
Electronics exchange	The procedure is described in the operating instructions manual. Note the instructions for parameter adjustment and setup.	
Software update	The procedure is described in the operating instructions manual. Note the instructions for parameter adjustment and setup.	

48369-EN-210114

7 Proof test

7.1 General information

Objective	To identify possible dangerous, undetected failures, the safety func- tion must be checked by a proof test at adequate intervals. It is the user's responsibility to choose the type of testing. The time intervals are determined by the selected PFD _{AVG} (see chapter " <i>Safety-related</i> <i>characteristics</i> ").		
	For documentation of these tests, the test protocol in the appendix can be used.		
	If one of the tests proves negative, the entire measuring system must be switched out of service and the process held in a safe state by means of other measures.		
	In a multiple channel architecture this applies separately to each channel.		
Preparation	 Determine safety function (mode, switching points) If necessary, remove the instruments from the safety chain and maintain the safety function by other means Provide an approved adjustment unit 		
Unsafe device status	Warning: During the function test, the safety function must be treated as unreli- able. Take into account that the function test influences downstream connected devices.		
	If necessary, you must take other measures to maintain the safety function.		
	After the function test, the status specified for the safety function must be restored.		
	7.2 Test 1: Without checking the process variable		
Conditions	 Instrument can remain in installed condition Output signal corresponds to the assigned process variable Device status in the menu Diagnosis: " OK" 		
Procedure	 Carry out a re-start (separate the test item at least 10 seconds from mains voltage) 		
	 Simulate upper fault current > 21 mA and check current output (test line resistor) 		
	 Simulate lower fault current ≤ 3.6 mA and check current output (test quiescent currents) 		
SIL	Note		
JIL	Test 1 detects no failures in the probably used Secondary sensor!		
Expected result	Step 1: Output signal corresponds to the assigned process variable and the device status in the menu Diagnosis is " OK "		
	Step 2: Output signal corresponds to > 21 mA		
	Step 3: Output signal corresponds to \leq 3.6 mA		

Proof Test Coverage	See Safety-related characteristics	
	7.3 Test 2: With check of the process variable	
Conditions	 Instrument can remain in installed condition Output signal corresponds to the assigned process variable Device status in the menu Diagnosis: " OK" 	
Procedure	 Carry out a re-start (separate the test item at least 10 seconds from mains voltage) 	
	 Simulate upper fault current > 21 mA and check current output (test line resistor) 	
	 Simulate lower fault current ≤ 3.6 mA and check current output (test quiescent currents) 	
	 Reference pressure measurement at 0 % - 50 % - 90 100 % of the adjusted measuring range in use (4 mA - 12 mA - 18,4 20 mA) 	
	5. If necessary, sensor calibration through service log-in and subse- quent reference pressure measurement as under point 4	
SIL	Note	
	When a Secondary sensor is used, also this sensor must be checked with a reference pressure measurement acc. to point 4!	
Expected result	Step 1: Output signal corresponds to the assigned process variable and the device status in the menu Diagnosis is " OK "	
	Step 2: Output signal corresponds to > 21 mA	
	Step 3: Output signal corresponds to \leq 3.6 mA	
	Step 4 and 5: Output signal corresponds to the reference pressure	
Proof Test Coverage	See Safety-related characteristics	

8 Appendix A: Test report

Identification		
Company/Tester		
Plant/Instrument TAG		
Meas. loop TAG		
Instrument type/Order code		
Instrument serial number		
Date, setup		
Date of the last proof test		

Test re	Test reason/Test scope	
	Setup without checking the process variable	
	Setup with check of the process variable	
	Proof test without checking the process variable	
	Proof test with check of the process variable	

Mode	Mode		
	Monitoring of an upper limit value		
	Monitoring a lower limit value		
	Range monitoring		

Adjusted parameters of the safety function are documented

Yes
No

Test result (if necessary)				
Test point	Process variable ²⁴⁾	Expected measured value	Real value	Test result
Value 1				
Value 2				
Value 3				
Value 4				
Value 5				

Confirmation Date: Signature:

9 Appendix B: Term definitions

Abbreviations

	~	
SIL	Safety Integrity Level (SIL1, SIL2, SIL3, SIL4)	
SC	Systematic Capability (SC1, SC2, SC3, SC4)	
HFT	Hardware Fault Tolerance	
SFF	Safe Failure Fraction	
PFD _{AVG}	Average Probability of dangerous Failure on Demand	
PFH	Average frequency of a dangerous failure per hour (Ed.2)	
FMEDA	Failure Mode, Effects and Diagnostics Analysis	
FIT	Failure In Time (1 FIT = 1 failure/10 ⁹ h)	
λ_{SD}	Rate for safe detected failure	
$\lambda_{_{SU}}$	Rate for safe undetected failure	
λ_{s}	$\lambda_{\rm S} = \lambda_{\rm SD} + \lambda_{\rm SU}$	
λ_{DD}	Rate for dangerous detected failure	
$\lambda_{_{DU}}$	Rate for dangerous undetected failure	
$\lambda_{_{\!H}}$	Rate for failure, who causes a high output current (> 21 mA)	
λ_{L}	Rate for failure, who causes a low output current (\leq 3.6 mA)	
$\lambda_{_{\!\!AD}}$	Rate for diagnostic failure (detected)	
$\lambda_{_{AU}}$	Rate for diagnostic failure (undetected)	
DC	Diagnostic Coverage	
PTC	Proof Test Coverage (Diagnostic coverage for manual proof tests)	
T1	Proof Test Interval	
LT	Useful Life Time	
MTBF	Mean Time Between Failure = MTTF + MTTR	
MTTF	Mean Time To Failure	
MTTR	IEC 61508, Ed1: Mean Time To Repair	
	IEC 61508, Ed2: Mean Time To Restoration	
$MTTF_{d}$	Mean Time To dangerous Failure (ISO 13849-1)	
PL	Performance Level (ISO 13849-1)	

10 Supplement C: SIL conformity

SIL Manufacturer declaration, NE130: Form B.1

Manufacturer											
VEGA Grieshaber KG		VEGA	VEGA Americas, Inc.								
Am Hohenstein 113, D-77761 Schiltach, G	ermany	4241 A	llendorf D	rive, Cincinnati,	Ohio 4	5209, USA					
General											
Device designation and permissible types	VEGABAR 80	series									
,	Two-wire 420mA/HART with SIL qualification Item-No: B8*.****** A***** Slave sensor with SIL qualification Item-No: B8*.******										
Safety-related output signal	420 mA										
Fault current	≥ 21 mA; ≤ 3,6	mA									
Process variable / function	Pressure transi In additional wi differential pres	th slave ser	isor:	2		vel measurement asurements					
Safety function(s)	Generation of a	a measured	value to n	nonitor MIN / MA	X/Ra	inge					
Device type acc. to IEC 61508-2	🗌 Туре А			🛛 Туре В							
Operating mode	🛛 Low Deman	d Mode		🛛 High De	emand	or Continuous Mode					
Valid Hardware-Version	≥ 1.0.0	≥ 1.0.0									
Valid Software-Version	≥ 1.0.0										
Safety manual	Document ID: 48369										
Type of evaluation (check only one box)	Complete HW/SW evaluation parallel to development incl. FMEDA and change request acc. to IEC 61508-2, 3										
,	Evaluation of "Prior use" performance for HW/SW incl. FMEDA and change request acc. to IEC 61508-2, 3										
	Evaluation of HW/SW field data to verify "prior use" acc. to IEC 61511										
	Evaluation by FMEDA acc. to IEC61508-2 for devices without software										
Evaluation through (incl. certificate no.)	TÜV Rheinland	Industrie S	ervice Gr	bH, Nr./No.: 96	Nr./No.: 968/EZ 640.04/20						
Test documents	Development d	ocuments	orts	Data sheets							
Safety Integrity											
Systematic Capability (SC)				SC2 for SIL	2	SC3 for SIL3					
Hardware Safety Integrity	Single-channel	use (HFT=	D)	SIL2 capabl	е	SIL3 capable					
	Multi-channel u	ise (HFT≥′	I)	SIL2 capabl	е	SIL3 capable					
FMEDA			,	Version	rsion						
	VEGABAR 82,	83, 86, 87		VEGABAR	VEGABAR 81						
Safety function(s)	MIN / MAX / Ra	ange		MIN / MAX	MIN / MAX / Range						
	44 FIT			77 FIT	77 FIT						
λ_{DU} (FIT = Failure In Time / 10 ⁹ h)											

λ _{DD}		1223 FIT	1083 FIT
λsu		0 FIT	0 FIT
λ _{SD}		0 FIT	0 FIT
SFF	(Safe Failure Fraction)	> 90 %	> 90 %
PTC	(Proof Test Coverage)	Test 1: 52% Test 2: 95%, with checking the process value	Test 1: 28% Test 2: 97%, with checking the process value
FMED	A data source	SN 29500	-

SCM 2 / 2020-11-26

48369-EN-210114

SIL Manufacturer declaration, NE130: Form B.1

FMEDA	Version with sla	Version with slave sensor consisting of a combination of								
	two VEGABAR 82, 83, 86 or 87	one VEGABAR 81 and one VEGABAR 82, 83, 86 or 87	two VEGABAR 81							
Safety function(s)	MIN / MAX / Range	MIN / MAX / Range	MIN / MAX / Range							
λ_{DU} (FIT = Failure In Time / 10 ⁹ h)	63 FIT	97 FIT	132 FIT							
λορ	1508 FIT	1368 FIT	1226 FIT							
λsu	0 FIT	0 FIT	0 FIT							
λsp	0 FIT	0 FIT	0 FIT							
SFF (Safe Failure Fraction)	> 90 %	> 90 %	> 90 %							
PTC (Proof Test Coverage)	Test 1: 36% Test 2: 95% *)	Test 1: 22% Test 2: 97% *)	Test 1:16% Test 2: 97% *)							
	*) Test 2 with checking the	*) Test 2 with checking the process value								
FMEDA data source	SN 29500	SN 29500								

Declaration

 \boxtimes

Our internal company quality management system ensures information on safety-related systematic faults which become evident in the future.

Certificate

Nr./No.: 968/EZ 640.04/20

Prüfgegenstand Product tested	Druckmessumformer Pressure Transmitter	Zertifikats- inhaber Certificate holder	VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany
Typbezeichnung Type designation	VEGABAR 81, VEGABAR 82, VEGA	BAR 83, VEGABAR 86	, VEGABAR 87
Prüfgrundlagen Codes and standards	IEC 61508 Parts 1-7:2010 IEC 61511-1:2016+ Corr.1:2016 + A		:2017 + Corr.1:2019 +2:2017
Bestimmungsgemäße Verwendung Intended application	Druckmessumformung für Absolut- o Medien. Die Produkte erfüllen die Anforderung Ein einzelner Sensor entsprichte einer Anwendungen bis SIL 2 entsprechen IEC 61508 / IEC 61511 eingesetzt w Bei zweikanaliger Anwendung (HFT = 61508 / IEC 61511 eingesetzt werde	gen der oben aufgeführ HFT = 0 - Struktur und d erden. = 1) können die Sensore	ten Prüfgrundlagen. I kann in sicherheitsgerichteten
	Pressure transmitter for absolute or of The products comply with the require A single sensor can be used in a HFT redundant application (HFT = 1) up to	ments of the applicable = 0 structure in applic	standards as listed above. ations up to SIL 2 and in
Besondere Bedingungen Specific requirements	Die zugehörigen Betriebsanleitungen The Operating Instructions and the S		I sind zu beachten.
Gültig bis / Valid until 2025-10-27			k Köln / Gerr servizioñie
CERT FSP3 V1.0:2017 in der ak	es liegt eine Evaluierung entsprecht tuellen Version zugrunde, deren Erg ieses Zertifikat ist nur gültig für Erze	ebnisse im Bericht N	Ir. 968/EZ 640.04/20 vom
CERT FSP3 V1.0:2017 in its acti	sed upon an evaluation in accordance ual version, whose results are docur lid only for products, which are iden	mented in Report No.	on Program 4400 968/EZ 640.04/20 dated 99 tested.
i	TÜV Rheinland Industrie S Bereich Automatie	on	d d industrie Se a06-7760 Fas
Köln, 2020-10-27	Funktionale Sicher Am Grauen Stein, 5110 Certification Body Safety & Security for A	05 Köln	DiplIng. Gebhard Bouwer
www.fs-products.com www.tuv.com	DAKKS Deutsche Akkenditierungsstel D-ze-11052-02-01	A	TÜVRheinland® Precisely Right.

10/222 12, 12 E A4 @ TÜV, TUEV and TUV are registered trademarks, Utilisation and application requires prior approval,

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2021

CE

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany Phone +49 7836 50-0 Fax +49 7836 50-201 E-mail: info.de@vega.com www.vega.com