Safety Manual

VEGASWING 66

Transistor (NPN/PNP) With SIL qualification

Document ID: 45308

Contents

1	Docu	ment language	. 3
2	Scop 2.1 2.2 2.3	e Instrument version Application area SIL conformity	. 4 . 4
3	Planr 3.1 3.2 3.3	ing Safety function Safe state Prerequisites for operation	. 5 . 5
4	Safet 4.1 4.2 4.3	y-related characteristics Characteristics acc. to IEC 61508 Characteristics acc. to ISO 13849-1 Supplementary information	. 6 . 6
5	Setup 5.1 5.2	General information Adjustment instructions	. 9
6	Diagr 6.1 6.2	Behaviour in case of failure Repair	10
7	Proof 7.1 7.2 7.3	test	11 11
8	Appe	ndix A: Test report	13
9	Арре	ndix B:Term definitions	14
10	Supp	lement C: SIL conformity	15

1 Document language

DE	Das vorliegende <i>Safety Manual</i> für Funktionale Sicherheit ist verfügbar in den Sprachen Deutsch, Englisch, Französisch und Russisch.
EN	The current <i>Safety Manual</i> for Functional Safety is available in German, English, French and Russian language.
FR	Le présent <i>Safety Manual</i> de sécurité fonctionnelle est disponible dans les langues suivantes: allemand, anglais, français et russe.
RU	Данное руководство по функциональной безопасности Safety Manual имеется на немецком, английском, французском и русском языках.

2 Scope

2.1 Instrument version

This safety manual applies to point level sensors

VEGASWING 66 - Transistor (NPN/PNP) with SIL qualification

Electronics module:

SG60HT-I

Valid versions:

- from HW Ver 1.0.0
- from SW Ver 1.1.0

SIL

The version "Plastic housing" is excluded!

2.2 Application area

The transmitter can be used for level detection of liquids in a safetyrelated system according to IEC 61508 in the modes *low demand mode* or *high demand mode*.

Due to the systematic capability SC3 this is possible up to:

- SIL2 in single-channel architecture
- SIL3 in multiple channel architecture

The following interface can be used to output the measured value:

• Transistor (NPN/PNP)

SIL

Both transistor outputs must be evaluated!

Shielded cable must be used for connection!

2.3 SIL conformity

The SIL confirmity was judged and certified independently by $T\ddot{U}V$ *Rheinland* according to IEC 61508:2010 (Ed.2) (verification documents see " Supplement").

The certificate is valid for the entire service life of all instruments that were sold before the certificate expired!

Safety function

3 Planning

3.1 Safety function

To monitor a limit level, the sensor detects via the conditions " *Vibrating element uncovered*" or " *Vibrating element covered*" a limiting value defined by the mounting location.

The detected status is signalled on the output with " *Transistor non-conductive*" or " *Transistor conductive*".

3.2 Safe state

Safe state

The safe state of the output signal is independent of the mode adjusted on the sensor.

For the safety function, both transistor outputs must be used!

Examples:

- When controlling an output load, it is connected to terminals 2 and 3
- With connected SPLC, the outputs NPN and PNP are evaluated by two separate channels

Mode	Overflow protection Mode max.	Dry run protection Mode min.
Vibrating element	covered	uncovered
Transistors	non-conductive (currentless)	non-conductive (currentless)

Fault signals in case of malfunction

Instructions and restric-

tions

Transistor outputs:

Non-conductive

3.3 Prerequisites for operation

- The measuring system should be used appropriately taking pressure, temperature, density and chemical properties of the medium into account. The application-specific limits must be observed.
- The specifications according to the operating instructions manual, particularly the current load on the output circuits, must be kept within the specified limits
- When used as dry run protection, buildup on the vibrating system should be avoided (probably shorter proof test intervals will be necessary)
- The instructions in chapter " Safety-related characteristics", paragraph " Supplementary information" must be noted
- All parts of the measuring chain must correspond to the planned " Safety Integrity Level (SIL)"

4 Safety-related characteristics

4.1 Characteristics acc. to IEC 61508

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ¹⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре В
Mode	Low demand mode, High demand mode
SFF	> 90 %
MTTR	8 h
MTBF = MTTF + MTTR ²⁾	1.17 x 10 ⁶ h (134 years)
Diagnostic test interval 3)	< 120 s
Fault reaction time 4)	<2s

Failure rates

λ_s	$\lambda_{_{DD}}$	λ _{DU}	λ _H	λ _L	$\lambda_{_{AD}}$
211 FIT	167 FIT	31 FIT	0 FIT	0 FIT	11 FIT

PFD _{AVG}	0.026 x 10 ⁻²	(T1 = 1 year)
PFD _{AVG}	0.038 x 10 ⁻²	(T1 = 2 years)
PFD _{AVG}	0.075 x 10 ⁻²	(T1 = 5 years)
PFH _D	0.031 x 10 ⁻⁶ 1/h	

Proof Test Coverag (PTC)

Test type 5)	Remaining failure rate of danger- ous undetected failures	PTC
Test 1	11 FIT	64 %
Test 2	2 FIT	95 %

4.2 Characteristics acc. to ISO 13849-1

Derived from the safety-related characteristics, the following figures result according to ISO 13849-1 machine safety): ⁶⁾

Parameter	Value
MTTFd	544 years
DC	85 %

¹⁾ Homogeneous redundancy possible.

²⁾ Including errors outside the safety function.

- ³⁾ Time during which all internal diagnoses are carried out at least once.
- ⁴⁾ Time between the occurrence of the event and the output of a fault signal.

⁵⁾ See section "Proof test".

⁶⁾ ISO 13849-1 was not part of the certification of the instrument.

Parameter	Value
PFH _D	3.12 x 10 ⁻⁸ 1/h

4.3 Supplementary information

Determination of the
failure ratesThe failure rates of the instruments were determined by an FMEDA
according to IEC 61508. The calculations are based on failure rates of
the components according to SN 29500:

All figures refer to an average ambient temperature of 40 $^{\circ}$ C (104 $^{\circ}$ F) during the operating time. For higher temperatures, the values should be corrected:

- Continuous application temperature > 50 °C (122 °F) by factor 1.3
- Continuous application temperature > 60 °C (140 °F) by factor 2.5

Similar factors apply if frequent temperature fluctations are expected.

- The failure rates are constant. Take note of the useful service life of the components according to IEC 61508-2.
- Multiple failures are not taken into account
- Wear on mechanical parts is not taken into account
- Failure rates of external power supplies are not taken into account
- The environmental conditions correspond to an average industrial environment

Calculation of PFD_{AVG} The values for PFD_{AVG} specified above were calculated as follows for a 1001 architecture:

Parameters used:

- T1 = Proof Test Interval
- PTC = 90 %
- LT = 10 years
- MTTR = 8 h

Boundary conditions relating to the configuration of the processing unit

- The failure signals of the measuring system are judged according to the idle current principle
- " fail low" and " fail high" signals are interpreted as a failure, whereupon the safe state must be taken on

If this is not the case, the respective percentages of the failure rates must be assigned to the dangerous failures and the values stated in chapter *Safety-related characteristics*" redetermined!

Multiple channel archi-
tectureDue to the systematic capability SC3, this instrument can also be
used in multiple channel systems up to SIL3, also with a homogene-
ously redundant configuration.

The safety-related characteristics must be calculated especially for the selected structure of the measuring chain using the stated failure

Assumptions of the FMEDA

45308-EN-230925

rates. In doing this, a suitable Common Cause Factor (CCF) must be considered (see IEC 61508-6, appendix D).

5 Setup

5.1 General information

Mounting and installation

Take note of the mounting and installation instructions in the operating instructions manual.

Setup must be carried out under process conditions.

5.2 Adjustment instructions

Adjustment elements

Please note!

The adjustment elements must be set according to the specified safety function:

- Slide switch for changeover of the mode (min./max.)
- Slide switch for changeover of the sensitivity

The function of the adjustment elements is described in the operating instructions manual.

SIL During adjustment process, the safety function must be considered as unreliable!

If necessary, you must take other measures to maintain the safety function.

With regard to the switch on/swich off delay it must be ensured that the sum of all switching delays from the transmitter to the actuator is adapted to the process safety time!

SIL The instrument must be protected against inadvertent or unauthorized adjustment!

6 Diagnostics and servicing

6.1 Behaviour in case of failure

Internal diagnosis

The instrument is permanently monitored by an internal diagnostic system. If a malfunction is detected, the respective output signals change to the safe status (see section " *Safe status*").

This condition is maintained for at least 1 second. If an error is no longer detected, the safety function is performed correctly again.

The diagnosis interval is specified in chapter " *Safety-related characteristics*".

If failures are detected, the entire measuring system must be shut down and the process held in a safe state by other measures.

The manufacturer must be informed of the occurrence of a dangerous undetected failure (incl. fault description).

6.2 Repair

Electronics exchange

The procedure is described in the operating instructions manual. Note the instructions for setup.

7 Proof test

	7.1 General information
Objective	To identify possible dangerous, undetected failures, the safety function must be checked by a proof test at adequate intervals. It is the user's responsibility to choose the type of testing. The time intervals are determined by the selected PFD_{AVG} (see chapter " <i>Safety-related characteristics</i> ").
	For documentation of these tests, the test protocol in the appendix can be used.
	If one of the tests proves negative, the entire measuring system must be switched out of service and the process held in a safe state by means of other measures.
	In a multiple channel architecture this applies separately to each channel.
Preparation	 Determine safety function (mode, switching points) If necessary, remove the instruments from the safety chain and maintain the safety function by other means
Unsafe device status	Warning: During the function test, the safety function must be treated as unreli- able. Take into account that the function test influences downstream connected devices.
	If necessary, you must take other measures to maintain the safety function.
	After the function test, the status specified for the safety function must be restored.
	7.2 Test 1: Without filling or dismounting the sensor
Conditions	 Instrument in installed condition Output signal corresponds to the level (covered or uncovered vibrating element) The two transistor outputs NPN and PNP must be tested separately!
Procedure	 Carry out a restart (switch the instrument off and then on again) Push the min./max. switch
Expected result	to 1: Output signal corresponds to the level to 2: Output signal changes status
Proof Test Coverage	See Safety-related characteristics
ee. loor oorenage	

	7.3 Test 2: With filling or dismounting of the sensor
Conditions	 Alternative 1: the instrument remains mounted; the condition " Vibrating element uncovered"/" Vibrating element covered" can be changed by filling or emptying to the switching point. Alternative 2: the instrument is dismounted; the condition " Vibrating element uncovered"/" Vibrating element covered" can be changed by dipping the instrument into the original medium Output signal corresponds to the level (covered or uncovered vibrating element) The two transistor outputs NPN and PNP must be tested separately!
Procedure	 Push the min./max. switch Filling or emptying up to the switching point or immersion into the
Expected result	original medium to 1: Output signal changes status to 2: Output signal corresponds to the modified level
Proof Test Coverage	See Safety-related characteristics

8 Appendix A: Test report

Identification		
Company/Tester		
Plant/Instrument TAG		
Meas. loop TAG		
Instrument type/Order code		
Instrument serial number		
Date, setup		
Date, last function test		

Test r	eason	Test s	соре
()	Setup	()	without filling or dismounting the sensor
()	Proof test	()	with filling or dismounting the sensor

Mode		Sensi	tivity
()			≥ 0.7 g/cm³ (0.025 lbs/in³)
()	Dry run protection	()	≥ 0.5 g/cm³ (0.018 lbs/in³)

Test result

Test step	Level	Expected measured value	Real value	Test result

Confirmation	
Date:	Signature:

Abbreviations

9 Appendix B: Term definitions

SIL	Safety Integrity Level (SIL1, SIL2, SIL3, SIL4)
SC	Systematic Capability (SC1, SC2, SC3, SC4)
HFT	Hardware Fault Tolerance
SFF	Safe Failure Fraction
PFD _{AVG}	Average Probability of dangerous Failure on Demand
PFH _D	Average frequency of a dangerous failure per hour (Ed.2)
FMEDA	Failure Mode, Effects and Diagnostics Analysis
FIT	Failure In Time (1 FIT = 1 failure/10 ⁹ h)
λ_{SD}	Rate for safe detected failure
$\lambda_{_{SU}}$	Rate for safe undetected failure
λ_s	$\lambda_{\rm S} = \lambda_{\rm SD} + \lambda_{\rm SU}$
λ_{DD}	Rate for dangerous detected failure
λ_{DU}	Rate for dangerous undetected failure
λ _H	Rate for failure, who causes a high output current (> 21 mA)
λ	Rate for failure, who causes a low output current (\leq 3.6 mA)
λ_{AD}	Rate for diagnostic failure (detected)
λ_{AU}	Rate for diagnostic failure (undetected)
DC	Diagnostic Coverage
PTC	Proof Test Coverage (Diagnostic coverage for manual proof tests)
T1	Proof Test Interval
LT	Useful Life Time
MTBF	Mean Time Between Failure = MTTF + MTTR
MTTF	Mean Time To Failure
MTTR	IEC 61508, Ed1: Mean Time To Repair
	IEC 61508, Ed2: Mean Time To Restoration
MTTF _d	Mean Time To dangerous Failure (ISO 13849-1)

10 Supplement C: SIL conformity

SIL Manufacturer declaration, NE130: Form B.1

Manufacturer											
VEGA Grieshaber KG Am Hohenstein 113, D-77761 Schiltach, Ge	erman	ıy									
General											
Device designation and permissible types	VEG	ASWING 66	vith SIL	qualificatio	on	Item-	No:	SG66.*****S/I/L***			
Safety-related output signal	S: R	elay (2 x SPD	T)	I: Transis	stor (NPN	N/PNP)	L: T	wo-wire (8/16 mA)			
Fault current	n/a		1 mA; ≤ 3,6 mA								
Process variable / function	Cov	ered or uncove	ered vibr	ating elem	nent						
	Rela clos	ay contact oper ed	n or	Transisto or condu		onductive	outp 16 r	out current 8 mA or mA			
Safety function(s)	Mon	itoring a limit l	evel for o	overflow p	rotection	n (MAX) or	dry	run protection (MIN)			
Device type acc. to IEC 61508-2	Π	Гуре А				Туре В					
Operating mode	Ø١	ow Demand N	1ode			High Dem	gh Demand or Continuous Mode				
Valid Hardware-Version	≥ 1.(0.0									
Valid Software-Version	≥ 1.1	1.0									
Safety manual	Doc	ument ID: 453	07	Docume	nt ID: 45	308	Doc	cument ID: 45309			
Type of evaluation (check only one box)		Complete HV change reque				developm	nent i	incl. FMEDA and			
		Evaluation of request acc.			mance fo	or HW/SW	incl.	FMEDA and change			
		Evaluation of acc. to IEC 6		field data	to verify	y "prior use	э"				
		Evaluation by	FMEDA	A acc. to I	EC61508	3-2 for dev	ices	without software			
Evaluation through (incl. certificate no.)	ΤÜV	Rheinland Ind	dustry Se	ervice Gm	bH, Nr./N	No. 968/E2	Z 567	7.04/18			
Test documents	Dev	elopment docu	iments	Test repo	orts		Dat	a sheets			
Safety Integrity											
Systematic Capability (SC)					_	for SIL2		SC3 for SIL3			

Systematic Capability (SC)		SC2 for SIL2	SC3 for SIL3
Hardware Safety Integrity	Single-channel use (HFT=0)	SIL2 capable	SIL3 capable
	Multi-channel use (HFT≥1)	SIL2 capable	SIL3 capable

FMED	A	Version		
		VEGASWING 66 R (S)	VEGASWING 66 T (I)	VEGASWING 66 Z (L)
Safety	function(s)	MIN / MAX	MIN / MAX	MIN / MAX
λ _{DU}	(FIT = Failure In Time / 109 h)	36 FIT	31 FIT	29 FIT
λ _{DD}		198 FIT	179 FIT	402 FIT
λ _{su}		329 FIT	211 FIT	0 FIT
λ _{SD}		0 FIT	0 FIT	0 FIT
SFF	(Safe Failure Fraction)	> 90 %	> 90 %	> 90 %
PTC	(Proof Test Coverage)	Test 1: 68% / Test 2: 96%	Test 1: 64% / Test 2: 95%	Test 1: 61% / Test 2: 95%
FMEDA	A data source	SN 29500		

Declaration

Our internal company quality management system ensures information on safety-related systematic faults which become evident in the future.

VEGASWING66_NE130_Form_B1_EN

Nr./No.: 968/EZ 50	67.06/23		
Prüfgegenstand Product tested	Sensoren zur Grenzstanderfassung Sensors for level detection	Zertifikats- inhaber Certificate holder	VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany
Typbezeichnung Type designation	VEGASWING 66 S (Relay), VEGASWING 66 I (Transistor), VEGASWING 66 L (8/16mA)		
Prüfgrundlagen Codes and standards	IEC 61508 Parts 1-7:2010		
Bestimmungsgemäße Verwendung Intended application	Sensoren zur Grenzstanderfassung in Flü erfüllen die Anforderungen der genannten sicherheitsbezogenen System in einer HF redundant (HFT=1) bis SIL 3 (Systematiss können im Anwendungsbereich der IEC 6 der EN 12953-9:2007 eingesetzt werden. IEC 61010-1:2017 + COR1:2019 und IEC Sensors for level detector on fluguids. The the requirements of the stated standards z HFT=0 configuration up to SIL 2 acc. IEC (Systematic Capability SC 3). The produc IEC 61511-1:2016 + AMD1:2017, EN 129 requirements of IEC 61010-1:2017 + COF	Prüfgrundlagen u T=0 Konfiguratior che Eignung SC 3 1511-1:2016 + Al Weiterhin wurden 61326-3-2:2017 sensors of the VE and can be used in 61508 and redun t can be used in tt 152-11:2007 and B	ind können in einem b is SIL 2 gemäß IEC 61508 und) verwendet werden. Die Produk MD1:2017, EN 12952-11:2007 un die Anforderungen der nachgewiesen. GASWING 66 Series comply wit a safety-related system in a dantty (HFT=1) up to SIL 3 e application area of SN 12953-9:2007, Furthermore tt
Besondere Bedingungen Specific requirements	Die zugehörigen Betriebsanleitungen und The operating instructions and the safety r		
Gültig bis / Valid until 2028-08-29			
CERT FSP1 V3.0:2020 in der 29.08.2023 dokumentiert sind. übereinstimmen. Ausgestellt w Die Akkreditierung gilt nur für d The issue of this certificate is b CERT FSP1 V3.0:2020 in its a 2023-08-29. This certificate is certification body accredited by	ates liegt eine Evaluierung entsprechend (aktuellen Version zugrunde, deren Ergebn Dieses Zertfikat ist nur gültig für Erzeugn on der durch die DAkkS nach DIN EN ISO Jan in der Urkundenanlage D-ZE-11052- based upon an evaluation in accordance w ctual version, whose results are document valid only for products, which are identical y DAkkS according to DIN EN ISO/IEC 17 a accreditation certificate D-ZE-11052-02	isse im Bericht I isse, die mit der /IEC 17065 akk 02–01 aufgeführ ith the Certificat ted in Report No I with the produc 065. The accrec	Nr. 968/EZ 567.06/23 vom n Prüfgegenstand reditierte Zertifizierungsstelle. rten Akkreditierungsumfang. ion Program 0. 968/EZ 567.06/23 dated it tested. Issued by the
	TÜV Rheinland Industrie Serv Bereich Automation	ice GmbH	h
Köln, 2023-08-29	Funktionale Sicherheit Am Grauen Stein, 51105 K Certification Body Safety & Security for Automation	öln	iplIng. (FH) Wolf Rückwart
www.fs-products.cor	-		

TÜV Rheinland Industrie Service GmbH, Am Grauen Stein, 51105 Köhn / Germany Tell: +49 221 806-1790, Fax: +49 221 806-1539, E-Mait: industrie-service@de.tw.com

												 4 5
												 308
												щ
												4-20
												 45308-EN-230925
												ß

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2023

CE

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany

Phone +49 7836 50-0 E-mail: info.de@vega.com www.vega.com