Manual de instruções

Transmissor de pressão de montagem suspensa com célula de medição de cerâmica

VEGABAR 86

Foundation Fieldbus

i

Document ID: 45043

Índice

1	Sobr	e o presente documento	4
	1.1	Função	4
	1.2	Grupo-alvo	4
	1.3	Simbologia utilizada	4
2	Para	sua segurança	5
	2.1	Pessoal autorizado	5
	2.2	Utilização conforme a finalidade	5
	2.3	Advertência sobre uso incorreto	5
	2.4	Instruções gerais de segurança	5
	2.5	Conformidade	6
	2.6	Recomendações NAMUR	6
	2.7	Proteçao ambiental	6
3	Desc	rição do produto	7
	3.1	Construção	7
	3.2	Modo de trabalho	7
	3.3	Embalagem, transporte e armazenamento	10
	3.4	Acessórios	11
4	Mont	ar	12
	4.1	Informações gerais	12
	4.2	Ventilação e compensação de pressão	14
	4.3	Medição de nível de enchimento	17
	4.4	Caixa externa	17
5	Conectar ao sistema de barramento		18
	5.1	Preparar a conexão	18
	5.2	Conectar	19
	5.3	Caixa de uma câmara	20
	5.4	Caixa de duas câmaras	20
	5.5	Caixa de duas câmaras com adaptador de VEGADIS	22
	5.6	Caixa IP66/IP68 (1 bar)	23
	5.7	Caixa externa no modelo IP68 (25 bar)	23
	0.C	Fase de Inicialização	20
6	Colo	car em funcionamento com o módulo de visualização e configuração	26
	6.1	Colocar o módulo de visualização e configuração	26
	6.2	Sistema de configuração	27
	6.3	Visualização de valores de medição	28
	0.4 6 5	Parametrização - colocação rapida em funcionamento	29
	6.6	Vista geral do monu	29
	6.7	Salvar dados de parametrização	40
-	0.1	canal autoc do paramente com o DACTuero	40
1			43
	7.1	Deremetrizer	43 ⊿ว
	7.2 7.2	Falalitetitzai	43 44
_	1.5		-++
8	Colo	caçao em tuncionamento com outros sistemas	45
	8.1	Programas de configuração DD	45
9	Diagr	nóstico, Asset Management e Serviço	46

45043-PT-230914

	9.1	Conservar	46
	9.2	Memória de diagnóstico	46
	9.3	Função Asset-Management	47
	9.4	Eliminar falhas	50
	9.5	Trocar o módulo do processo no modelo IP68 (25 bar)	51
	9.6	Trocar o módulo elétrônico	52
	9.7	Atualização do software	52
	9.8	Procedimento para conserto	52
10	Desm	ontagem	54
	10.1	Passos de desmontagem	54
	10.2	Eliminação de resíduos	54
11	Anex	o	55
	11.1	Dados técnicos	55
	11.2	Comunicação de aparelhos Foundation Fieldbus	65
	11.3	Cálculo da diferenca total	66
	11.4	Exemplo prático	67
	11.5	Dimensões	69
	11.6	Proteção dos direitos comerciais	80
	11.7	Marcas registradas	80

Observe em aplicações Éx as instruções de segurança específicas. Tais instruções são fornecidas com todos os dispositivo com homologação EX e constituem parte integrante do manual de instruções.

Versão redacional: 2023-09-01

1 Sobre o presente documento

1.1 Função

O presente manual fornece-lhe as informações necessárias para a montagem, conexão e colocação do dispositivo em funcionamento, além de instruções importantes para a manutenção, eliminação de falhas e troca de componentes. Leia-o, portanto, antes do comissionamento e guarde-o bem como parte do produto, próximo ao dispositivo e sempre acessível.

1.2 Grupo-alvo

Este manual de instruções destina-se a pessoal devidamente formado e qualificado, deve ficar acessível a esse pessoal e seu conteúdo tem que ser aplicado.

1.3 Simbologia utilizada

Este símbolo na capa deste manual indica o ID documento. Introduzindo-se o ID do documento no site <u>www.vega.com</u>, chega-se ao documento para download.

Nota: este símbolo identifica notas para evitar falhas, erros de funcionamento, danos no dispositivo e na instalação.

i

Cuidado: ignorar informações marcadas com este símbolo pode provocar danos em pessoas.

Advertência: ignorar informações marcadas com este símbolo pode

provocar danos sérios ou fatais em pessoas. Perigo: ignorar informações marcadas com este símbolo provocará

Aplicações em áreas com perigo de explosão

danos sérios ou fatais em pessoas.

Este símbolo indica informações especiais para aplicações em áreas com perigo de explosão.

Lista

O ponto antes do texto indica uma lista sem sequência obrigatória.

1 Sequência definida

Números antes do texto indicam passos a serem executados numa sequência definida.

Eliminação

Este símbolo indica informações especiais para aplicações para a eliminação.

2 Para sua segurança

2.1 Pessoal autorizado

Todas as ações descritas nesta documentação só podem ser efetuadas por pessoal técnico devidamente qualificado e autorizado.

Ao efetuar trabalhos no e com o dispositivo, utilize o equipamento de proteção pessoal necessário.

2.2 Utilização conforme a finalidade

O tipo VEGABAR 86 é um transmissor de pressão para a medição de nível.

Informações detalhadas sobre a área de utilização podem ser lidas no capítulo " *Descrição do produto*".

A segurança operacional do dispositivo só ficará garantida se ele for utilizado conforme a sua finalidade e de acordo com as informações contidas no manual de instruções e em eventuais instruções complementares.

2.3 Advertência sobre uso incorreto

Se o produto for utilizado de forma incorreta ou não de acordo com a sua finalidade, podem surgir deste dispositivo perigos específicos da aplicação, por exemplo, um transbordo do reservatório, devido à montagem errada ou ajuste inadequado. Isso pode causar danos materiais, pessoais ou ambientais. Isso pode prejudicar também as propriedades de proteção do dispositivo.

2.4 Instruções gerais de segurança

O dispositivo atende aos padrões técnicos atuais, sob observação dos respectivos regulamentos e diretrizes. Ele só pode ser utilizado se estiver em perfeito estado técnico e um funcionamento seguro esteja garantido. A empresa proprietária do dispositivo é responsável pelo seu funcionamento correto. No caso de uso em produtos agressivos ou corrosivos que possam danificar o dispositivo, o usuário tem que se assegurar, através de medidas apropriadas, do seu funcionamento correto.

É necessário observar as instruções de segurança contidas neste manual, os padrões nacionais de instalação e os regulamentos vigentes relativos à segurança e à prevenção de acidentes também precisam ser observados.

Por motivos de segurança e garantia, intervenções que forem além dos manuseios descritos no manual de instruções só podem ser efetuadas por pessoal autorizado por nós. Modificações feitas por conta própria são expressamente proibidas. Por motivos de segurança, só podem ser usados acessórios indicados por nós.

Para evitar perigos, devem ser respeitadas as sinalizações e instruções de segurança fixadas no dispositivo.

2.5 Conformidade

O dispositivo atende as exigências legais das diretrizes ou regulamentos técnicos específicos do país em questão. Confirmamos a conformidade através de uma marcação correspondente.

As respectivas declarações de conformidade podem ser encontradas em nosso site.

2.6 Recomendações NAMUR

A NAMUR uma associação que atua na área de automação da indústria de processamento na Alemanha. As recomendações NAMUR publicadas valem como padrões na instrumentação de campo.

O dispositivo atende as exigências das seguintes recomendações NAMUR:

- NE 21 Compatibilidade eletromagnética de meios operacionais
- NE 53 Compatibilidade de aparelhos de campo e componentes de visualização/configuração
- NE 107 Automonitoração e diagnóstico de aparelhos de campo

Para maiores informações, vide www.namur.de.

2.7 Proteção ambiental

A proteção dos recursos ambientais é uma das nossas mais importantes tarefas. Por isso, introduzimos um sistema de gestão ambiental com o objetivo de aperfeiçoar continuamente a proteção ecológica em nossa empresa. Nosso sistema de gestão ambiental foi certificado conforme a norma DIN EN ISO 14001.

Ajude-nos a cumprir essa meta, observando as instruções relativas ao meio ambiente contidas neste manual:

- Capítulo " Embalagem, transporte e armazenamento"
- Capítulo " Eliminação controlada do dispositivo"

3 Descrição do produto

3.1 Construção

Volume de fornecimento

- São fornecidos os seguintes componentes:
- Transmissor de pressão VEGABAR 86
- Válvulas de purga de ar, tampões roscados conforme o modelo (vide capítulo " *Medidas*")

O escopo adicional de fornecimento consiste em:

- Documentação
 - Guia rápido VEGABAR 86
 - Certificado de teste para transmissores de pressão
 - Instruções para acessórios opcionais para o dispositivo
 - "Instruções de segurança" específicas para aplicações Ex (em modelos Ex)
 - Se for o caso, outros certificados

Informação:

No manual de instruções são descritas também características opcionais do dispositivo. O respectivo volume de fornecimento depende da especificação da encomenda.

Placa de características

A placa de características contém os dados mais importantes para a identificação e para a utilização do dispositivo:

- Tipo de dispositivo
- Informações sobre homologações
- Informações sobre a configuração
- Dados técnicos
- Número de série do dispositivo
- Código Q para identificação do aparelho
- Código numérico para o acesso Bluetooth (opcional)
- Informações do fabricante

Documentos e software

Existem as seguintes possibilidades para encontrar os dados do pedido, os documentos ou o software do seu aparelho:

- Visite "<u>www.vega.com</u>" e digite no campo de pesquisa o número de série de seu dispositivo.
- Escaneie o código QR que se encontra na placa de características.
- Abra o app da VEGA Tools e introduza em " *Documentação*" o número de série.

3.2 Modo de trabalho

Grandezas de medição

O VEGABAR 86 é apropriado para a medição das seguintes grandezas do processo:

Nível de enchimento

Fig. 1: Medição do nível de enchimento com VEGABAR 86

Pressão diferencial eletrônica A depender do modelo o VEGABAR 86 é apropriado também para medição da pressão diferencial eletrônica. Para tal o aparelho é combinado com um dispositivo secundário.

Fig. 2: Medição eletrônica de pressão diferencial através de uma combinação primário/secundário

Informações detalhadas a esse respeito podem ser encontradas no manual de instruções do respectivo dispositivo secundário.

Área de aplicação O VEGABAR 86 é um transmissor de pressão de montagem suspensa para a medição do nível de enchimento em poços, bacias e reservatórios abertos. A flexibilidade oferecida pelos diversos mode-

•	_	
V		FA
_		

	los com cabo e tubo permitem a utilização do aparelho em diversas aplicações.
Produtos que podem ser	Podem ser medidos produtos líquidos.
medidos	A depender do modelo do aparelho e do arranjo de medição, os pro- dutos a serem medidos podem ser viscosos ou conter substâncias abrasivas.
Sistema de medição pressão	O elemento sensor é a célula de medição CERTEC [®] com membrana de cerâmica robusta. A pressão do processo desvia a membrana de cerâmica, provocando uma alteração da capacitância na célula de medição, o que é transformado em um sinal elétrico e emitido como valor de medição através do sinal de saída.
	A célula de medição é utilizada em dois tamanhos:
	 CERTEC[®] (Ø 28 mm) em sensor do valor de medição 32 mm Mini-CERTEC[®] (Ø 17,5 mm) em sensor do valor de medição 22 mm
Sistema de medição Temperatura	Um sensor de temperatura na membrana de cerâmica da célula de medição CERTEC [®] ou no corpo de cerâmica da célula de medição Mini-CERTEC [®] detecta a temperatura atual do processo. O valor da temperatura é emitido através de:
	 O módulo de visualização e configuração A saída de corrente ou a saída de corrente adicional A saída de sinal digital
	Também são imediatamente detectadas oscilações extremas da tem- peratura do processo na célula de medição CERTEC [®] . Os valores na membrana de cerâmica da célula de medição são comparados com a medição de temperatura no corpo básico de cerâmica. O sistema eletrônico do sensor inteligente compensa, em poucos ciclos de me- dição, eventuais erros de medição inevitáveis por meio de choques de temperatura. Estes provocam, conforme a atenuação ajustada, apenas alterações mínimas e breves do sinal de saída.
Tipos de pressão	A depender do tipo de pressão selecionado, a célula de medição apresenta diferentes estruturas.
	Pressão relativa : a célula de medição é aberta para a atmosfera. A pressão do ambiente é detectada e compensada pela célula de medição, de forma que ela não tem qualquer influência sobre o valor de medição.
	Pressão absoluta : a célula de medição é evacuada e blindada. A pressão do ambiente não é compensada e influencia, portanto, o valor de medição.
	Pressão relativa com compensação climática: a célula de medição é evacuada e blindada. A pressão do ambiente é detecta- da e compensada no sistema eletrônico através de um sensor de referência, não tendo, portanto, nenhuma influência sobre o valor de medição.

Princípio de vedação

A representação a seguir mostra a montagem da célula de medição em cerâmica no transdutor do valor de medição e o princípio de vedação.

Fig. 3: Montagem da célula de medição em cerâmica embutida na frente com vedação dupla

- 1 Caixa transdutor de medição
- 2 Célula de medição
- 3 Vedação lateral para célula de medição
- 4 Vedação frontal adicional para célula de medição
- 5 Membrana

3.3 Embalagem, transporte e armazenamento

Embalagem	O seu dispositivo foi protegido para o transporte até o local de utiliza- ção por uma embalagem. Os esforços sofridos durante o transporte foram testados de acordo com a norma ISO 4180.	
	A embalagem do dispositivo é de papelão, é ecológica e pode ser re- ciclada. Em modelos especiais é utilizada adicionalmente espuma ou folha de PE. Elimine o material da embalagem através de empresas especializadas em reciclagem.	
Transporte	Para o transporte têm que ser observadas as instruções apresen- tadas na embalagem. A não observância dessas instruções pode causar danos no dispositivo.	
Inspeção após o trans- porte	Imediatamente após o recebimento, controle se o produto está com- pleto e se ocorreram eventuais danos durante o transporte. Danos causados pelo transporte ou falhas ocultas devem ser tratados do modo devido.	
Armazenamento	As embalagens devem ser mantidas fechadas até a montagem do dispositivo e devem ser observadas as marcas de orientação e de armazenamento apresentadas no exterior das mesmas.	
	Caso não seja indicado algo diferente, guarde os dispositivos emba- lados somente sob as condições a seguir:	
	 Não armazenar ao ar livre Armazenar em lugar seco e livre de pó Não expor a produtos agressivos Proteger contra raios solares Evitar vibrações mecânicas 	
Temperatura de transpor- te e armazenamento	 Consulte a temperatura de armazenamento e transporte em " Anexo - Dados técnicos - Condicões ambientais" 	

Suspender e transportar No caso de peso de dispositivos acima de 18 kg (39.68 lbs), devem ser usados dispositivos apropriados e homologados para suspendê--los ou transportá-los. Acessórios 3.4 As instruções para os acessórios apresentados encontram-se na área de download de nosso site. Módulo de visualização e O módulo de visualização e configuração destina-se à exibição dos configuração valores medidos, à configuração e ao diagnóstico. O módulo Bluetooth integrado (opcional) permite a configuração sem fio através de dispositivos de configuração padrão. VEGACONNECT O adaptador de interface VEGACONNECT permite a conexão de aparelhos com função de comunicação através da interface USB de um PC. Sensores secundários Sensores secundários da série VEGABAR 80, em combinação com o VEGABAR 86, permitem uma medição eletrônica de pressão diferencial VEGADIS 81 O VEGADIS 81 é uma unidade externa de leitura e comando para sensores plics® da VEGA. Adaptador do VEGADIS O adaptador VEGADIS é um acessório para sensores com caixa de duas câmaras e permite a conexão do VEGADIS 81 através de um conector M12 x 1 na caixa do sensor. Proteção contra sobre-O dispositivo de proteção contra sobretensão B81-35 é colocado tensão no lugar dos terminais em uma caixa de uma câmara ou de duas câmaras. Cobertura de proteção A capa protege a caixa do sensor contra sujeira e aquecimento excessivo por raios solares. Estão disponíveis flanges roscados em diversos modelos, corres-Flanges pondentes aos seguintes padrões: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80. Luva para soldagem, Luvas de soldagem destinam-se à conexão dos aparelhos ao procesadaptador de rosca e de SO. higiene Adaptadores de rosca e higiene permitem a adaptação simples de dispositivos com conexões roscadas padrão, por exemplo, a conexões de higiene do lado do processo.

Umidade relativa do ar de 20 ... 85 %

cesso

Condições do pro-

4 Montar

4.1 Informações gerais

Nota:

Por razões de segurança, o dispositivo só pode ser utilizado dentro das condições admissíveis do processo. Informações a esse respeito podem ser encontradas no capítulo "*Dados técnicos*" do manual de instruções na placa de características.

Assegure-se, antes da montagem, de que todas as peças do dispositivo que se encontram no processo sejam apropriadas para as condições que regem o processo.

Entre elas, especialmente:

- Peça ativa na medição
- Conexão do processo
- Vedação do processo

São condições do processo especialmente:

- Pressão do processo
- Temperatura do processo
- Propriedades químicas dos produtos
- Abrasão e influências mecânicas

Proteção contra umidade

Proteja seu dispositivo contra a entrada de umidade através das seguintes medidas:

- Utilize o cabo apropriado (vide capítulo " Conectar à alimentação de tensão")
- Apertar a prensa-cabo ou conector de encaixe firmemente
- Conduza para baixo o cabo de ligação antes da prensa-cabo ou conector de encaixe

Isso vale principalmente na montagem ao ar livre, em recintos com perigo de umidade (por exemplo, através de processos de limpeza) e em reservatórios refrigerados ou aquecidos.

Nota:

Certifique-se se durante a instalação ou a manutenção não pode entrar nenhuma humidade ou sujeira no interior do dispositivo.

Para manter o grau de proteção do dispositivo, assegure-se de que sua tampa esteja fechada durante a operação e, se for o caso, travada.

Enroscar

Dispositivos com uma conexão roscada são enroscados com uma chave de boca adequada com sextavado, na conexão do processo. Tamanho da chave, vide capítulo "*Medidas*".

Advertência:

A caixa ou a conexão elétrica não podem ser usadas para enroscar o dispositivo! Ao apertar, isso pode causar danos, por exemplo, na mecânica de rotação da caixa, dependendo do modelo.

Vibrações	Evite danos do aparelho através de forças laterais, por exemplo, vibrações. É recomendado proteger aparelhos com conexão de processo por rosca G½ de plástico, no local de uso, através de um suporte adequado para instrumentos de medição.
	No caso de fortes vibrações no local de uso, deveria ser utilizado o modelo do aparelho com caixa externa. Vide capítulo " <i>Caixa externa</i> ".
Pressão do processo admissível (MWP) - apa- relho	A faixa admissível de pressão do processo é indicada na placa de características através de MWP" (Maximum Working Pressure), vide capítulo " <i>Construção</i> ". Os dados também são válidos se estiver montada, de acordo com o pedido, uma célula de medição com faixa de medição mais alta que a faixa de pressão permitida da conexão do processo.
	Além disso, um desvio de temperatura da conexão do processo, por exemplo, no caso de flanges, pode limitar a faixa de pressão do processo de acordo com a respectiva norma.
Pressão do processo admissível (MWP) - aces- sório de montagem	A faixa de pressão do processo admissível é indicada na placa de características. O aparelho só pode ser utilizado com essas pressões se os acessórios de montagem usados também forem apropriados para esses valores. Garanta isso através da instalação de flanges, luvas para soldagem, anéis tensores de conexões Clamp, vedações, etc. adequados.
Limites de temperatura	Temperaturas do processo altas significam muitas vezes também uma alta temperatura ambiente. Assegure-se de que os limites máxi- mos de temperatura para o ambiente da caixa do sistema eletrônico e do cabo de conexão indicadas no capítulo " <i>Dados técnicos</i> " não são ultrapassadas.
	0.00

- Fig. 4: Faixas de temperatura
- 1 Temperatura do processo
- 2 Temperatura ambiente

Proteção para o transporte e a montagem

A depender do transdutor de medição, o VEGABAR 86 é fornecido com uma capa protetora ou uma proteção para o transporte e a montagem.

Fig. 5: VEGABAR 86, proteção para o transporte e a montagem

1 Elemento de medição

2 Proteção para o transporte e a montagem

Ela deve ser removida após a montagem e antes da colocação em funcionamento do aparelho.

Se os meios a serem medidos estiverem pouco sujos, a proteção para o transporte e a montagem podem permanecer no aparelho como proteção contra impacto durante o funcionamento.

4.2 Ventilação e compensação de pressão

O elemento filtrante na caixa do sistema eletrônico tem as seguintes funções:

- Ventilação caixa do sistema eletrônico
- Compensação de pressão atmosférica (para faixas de medição de pressão relativa)

Cuidado:

O elemento de filtragem provoca uma compensação de pressão com retardo. Quando a tampa da caixa é aberta/fechada rapidamente, o valor de medição pode, portanto, alterar-se por aprox. 5 s em até 15 mbar.

Para uma ventilação efetiva o elemento filtrante precisa sempre estar isento de incrustações. Portanto, na montagem horizontal gire a caixa de modo que o elemento filtrante fique voltado para baixo. Desta forma estará melhor protegido contra incrustações.

Cuidado:

Não utilize lava-jatos para a limpeza. O elemento de filtragem poderia ser danificado e é possível que entre umidade na caixa.

A seguir será descrito como o elemento de filtragem é disposto em cada modelo do aparelho.

elemento filtrante - posição

Fig. 6: Posição do elemento de filtragem

- 1 Caixa de um câmara de plástico, de aço inoxidável (fundição fina)
- 2 Alumínio-uma câmara
- 3 Caixa de uma câmara de aço inoxidável (eletropolido)
- 4 Caixa de duas câmaras de plástico
- 5 Caixa de duas câmaras de alumínio, de aço inoxidável (fundição fina)
- 6 Elemento de filtragem

Nos seguintes aparelhos encontra-se montado um bujão ao invés do do elemento de filtragem:

- Aparelhos com grau de proteção IP66/IP68 (1 bar) Ventilação por capilar no cabo conectado de forma fixa
- Aparelhos com pressão absoluta
- elemento filtrante posição modelo Ex d
- → Gire o anel metálico de tal modo que o elemento de filtragem fique voltado para baixo após a montagem aparelho. Isso melhora sua proteção contra incrustações.

Fig. 7: Posição do elemento de filtragem - Modelo Ex d

- 1 Anel metálico girável
- 2 Elemento de filtragem

No caso de faixas de medição de pressão absoluta, é montado um bujão cego ao invés do filtro.

Elemento filtrante -Position Second Line of Defense

A Second Line of Defense (SLOD) é um segundo nível de separação do processo na forma de uma passagem vedada contra gás na garganta da caixa, que evita a entrada do produto na caixa.

O módulo do processo nesses aparelhos é completamente blindado. É utilizada uma célula de medição de pressão absoluta, de forma que não é necessária uma ventilação.

No caso de faixas de medição relativas, a pressão do ambiente é detectada e compensada por um sensor de referência no sistema eletrônico.

Fig. 8: Posição do elemento de filtragem - Passagem hermética

- 1 Elemento de filtragem
- 2 Passagem vedada para gases

elemento filtrante - posição modelo IP69K

Fig. 9: Posição do elemento de filtragem - Modelo IP69K

1 Elemento de filtragem

Em aparelhos com pressão absoluta, encontra-se montado um bujão ao invés do elemento de filtragem.

4.3 Medição de nível de enchimento

Observe as instruções a seguir para o arranjo de medição:

- Monte o aparelho longe do fluxo de enchimento e esvaziamento
- Monte o aparelho de forma que fique protegido contra golpes de pressão de um agitador

4.4 Caixa externa

Fig. 10: Disposição do ponto de medição, caixa externa

- 1 Sensor
- 2 Cabo de ligação sensor, caixa externa
- 3 Caixa externa
- 4 Linhas de sinalização

Construção

Arranjo de medição

5

	5.1 Preparar a conexão
Instruções de segurança	Observe sempre as seguintes instruções de segurança:
	Conexão elétrica só deve ser efetuada por pessoal técnico qualifi- cado e autorizado pelo proprietário do equipamento
	No caso de perigo de ocorrência de sobretensões, instalar dispo- sitivos de proteção adequados
	Advertâncie
\triangle	Conectar ou desconectar o aterramento apenas com a tensão desli- gada.
Alimentação de tensão	O aparelho necessita de uma tensão de serviço de 9 32 V DC. A tensão de serviço e o sinal digital do barramento são conduzidos pelo mesmo cabo de dois fios. O abastecimento é efetuado através da alimentação de tensão H1.
Cabo de ligação	A conexão é feita com cabo blindado conforme as especificações Fieldbus.
	Em aparelhos com caixa e prensa-cabo, utilize cabos com seção transversal redonda. Controle para qual diâmetro externo do cabo o prensa-cabo é apropriado, para que fique garantida a vedação do prensa-cabo (grau de proteção IP).
	Utilize um prensa-cabo apropriado para o diâmetro do cabo.
	Cuidar para que toda a instalação seja efetuada conforme as especi- ficações Fieldbus. Deve-se observar principalmente a montagem das respectivas resistências terminais no bus.
Blindagem do cabo e aterramento	Observe que a blindagem do cabo e o aterramento sejam realizados de acordo com a especificação do barramento de campo. Reco- mendamos conectar a blindagem do cabo ao potencial da terra em ambos os lados.
	Em sistemas com compensação de potencial, ligue a blindagem do cabo na fonte de alimentação, na caixa de conexão e no sensor diretamente ao potencial da terra. Para isso, a blindagem do sensor tem que ser conectada ao terminal interno de aterramento. O terminal externo de aterramento da caixa tem que ser ligado à compensação de potencial com baixa impedância.
Prensa-cabos	Rosca métrica: Em caixas do dispositivo com roscas métricas, os prensa-cabos são enroscados de fábrica. Eles são protegidos para o transporte por bujões de plástico.
i	Nota: É necessário remover esses bujões antes de efetuar a conexão elétri- ca.

Conectar ao sistema de barramento

45043-PT-230914 -는

Rosca NPT:

Em caixas de dispositivo com roscas NPT autovedantes, os prensacabos não podem ser enroscados pela fábrica. Por isso motivo, os orifícios livres de passagem dos cabos são protegidos para o transporte com tampas de proteção contra pó vermelhas.

Nota:

Essas capas protetoras têm que ser substituídas por prensa-cabos homologados ou fechadas por bujões apropriados antes da colocação em funcionamento.

Numa caixa de plástico, o prensa-cabo de NPT e o conduíte de aço têm que ser enroscado sem graxa.

Torque máximo de aperto para todas as caixas: vide capítulo " *Dados técnicos*".

5.2 Conectar

Técnica de conexãoA conexão da alimentação de tensão e da saída de sinal é realizada
através de terminais de encaixe na caixa do dispositivo.

A ligação do módulo de visualização e configuração ou do adaptador de interface é feita através de pinos de contato na caixa.

Informação: O bloco de te

O bloco de terminais é encaixável e pode ser removido do módulo eletrônico. Para tal, levantar o bloco de terminais com uma chave de fenda pequena e removê-lo. Ao recolocá-lo, deve-se escutar o encaixe do bloco.

Passos para a conexão

Proceda da seguinte maneira:

- 1. Desaparafuse a tampa da caixa
- 2. Remova um módulo de visualização e configuração eventualmente existente. Para tal, gire-o levemente para a esquerda
- 3. Soltar a porca de capa do prensa-cabo e remover o bujão
- 4. Decape o cabo de ligação em aprox. 10 cm (4 in) e as extremidades dos fios em aprox. 1 cm (0.4 in)
- 5. Introduza o cabo no sensor através do prensa-cabo

Fig. 11: Passos 5 e 6 do procedimento de conexão

- 1 Caixa de uma câmara
- 2 Caixa de duas câmaras

6. Encaixar as extremidades dos fios nos terminais conforme o esquema de ligações

Nota:

Fios rígidos e fios flexíveis com terminais são encaixados diretamente nos terminais do dispositivo. No caso de fios flexíveis sem terminal, pressionar o terminal por cima com uma chave de fenda pequena para liberar sua abertura. Quando a chave de fenda é removida, os terminais são normalmente fechados.

- Controlar se os cabos estão corretamente fixados nos bornes, puxando-os levemente
- Conectar a blindagem no terminal interno de aterramento. Conectar o terminal externo de aterramento à compensação de potencial.
- 9. Apertar a porca de capa do prensa-cabo, sendo que o anel de vedação tem que abraçar completamente o cabo
- 10. Recolocar eventualmente o módulo de visualização e configuração
- 11. Aparafusar a tampa da caixa

Com isso, a conexão elétrica foi concluída.

5.3 Caixa de uma câmara

A figura a seguir para os modelos Não-Ex, Ex ia- e Ex d.

Compartimento do sistema eletrônico e de conexão

Fig. 12: Compartimento do sistema eletrônico e de conexões - Caixa de uma câmara

- 1 Alimentação de tensão, saída de sinal
- 2 Pinos de contato para módulo de visualização e configuração ou adaptador de interface
- 3 Interruptor de simulação ("1" = operação com liberação de simulação)
- 4 Para unidade externa de visualização e configuração
- 5 Terminais de aterramento para a conexão da blindagem do cabo

5.4 Caixa de duas câmaras

As figuras a seguir valem tanto para o modelo não-Ex como para o modelo Ex ia.

Compartimento do sistema eletrônico

Fig. 13: Compartimento do sistema eletrônico - Caixa de duas câmaras

- 1 Ligação interna com o compartimento de conexão
- 2 Pinos de contato para módulo de visualização e configuração ou adaptador de interface
- 3 Interruptor de simulação ("1" = operação com liberação de simulação)

Compartimento de conexões

Fig. 14: Compartimento de conexão - Caixa de duas câmaras

- 1 Alimentação de tensão, saída de sinal
- 2 Para módulo de visualização e configuração ou adaptador de interface
- 3 Para unidade externa de visualização e configuração
- 4 Terminais de aterramento para a conexão da blindagem do cabo

5.5 Caixa de duas câmaras com adaptador de VEGADIS

Compartimento do sistema eletrônico

Fig. 15: Vista do compartimento do sistema eletrônico com adaptador do VE-GADIS para a conexão da unidade externa de visualização e configuração

- 1 Adaptador do VEGADIS
- 2 Conexão de encaixe interna
- 3 Conector de encaixe M12 x 1

Atribuição do conector de encaixe

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Pino de contato	Cor do cabo de liga- ção no sensor	Terminal módulo ele- trônico
Pin 1	marrom	5
Pin 2	Branco	6
Pin 3	Azul	7
Pin 4	Preto	8

5.6 Caixa IP66/IP68 (1 bar)

Atribuição dos fios cabo de ligação

Fig. 17: Atribuição dos fios cabo de ligação

- 1 marrom (+): para a alimentação de tensão ou para o sistema de avaliação
- 2 Azul (+): para a alimentação de tensão ou para o sistema de avaliação
- 3 Blindagem
- 4 Capilares de compensação de pressão com elemento de filtragem

5.7 Caixa externa no modelo IP68 (25 bar)

Vista geral

Fig. 18: VEGABAR 86 como modelo IP68 de 25 bar, não-Ex e saída axial do cabo, caixa externa

Compartimento do sistema eletrônico e de conexões da alimentação

Fig. 19: Compartimento do sistema eletrônico e de conexão

- 1 Módulo eletrônico
- 2 Prensa-cabo para a alimentação de tensão
- 3 Prensa-cabo para cabo de ligação do elemento de medição

Compartimento de conexão base da caixa

Fig. 20: Conexão do módulo de processo na base da caixa

- 1 Amarelo
- 2 Branco
- 3 Vermelho
- 4 Preto
- 5 Blindagem
- 6 Capilares de compensação de pressão

Compartimento do sistema eletrônico e de conexão

Fig. 21: Compartimento do sistema eletrônico e de conexões - Caixa de uma câmara

- 1 Alimentação de tensão, saída de sinal
- 2 Pinos de contato para módulo de visualização e configuração ou adaptador de interface
- 3 Interruptor de simulação ("1" = operação com liberação de simulação)
- 4 Para unidade externa de visualização e configuração
- 5 Terminais de aterramento para a conexão da blindagem do cabo

5.8 Fase de inicialização

Após a ligação do aparelho à alimentação de tensão ou após o retorno da tensão, o aparelho executa um autoteste:

- Teste interno do sistema eletrônico
- Exibição de uma mensagem de status no display ou PC

Em seguida, o valor de medição atual é emitido pela linha de sinais. O valor considera ajustes já realizados, como, por exemplo, a calibração de fábrica.

6 Colocar em funcionamento com o módulo de visualização e configuração

6.1 Colocar o módulo de visualização e configuração

O módulo de visualização e configuração pode ser empregue no sensor e removido do mesmo novamente a qualquer momento. Ao fazê-lo podem ser selecionadas quatro posições deslocadas em 90°. Para tal, não é necessário uma interrupção da alimentação de tensão.

Proceda da seguinte maneira:

- 1. Desaparafuse a tampa da caixa
- Coloque o módulo de visualização e configuração no sistema eletrônico na posição desejada e gire-o para direita até que ele se encaixe
- 3. Aparafuse firmemente a tampa da caixa com visor

A desmontagem ocorre de forma análoga, no sentido inverso.

O módulo de visualização e configuração é alimentado pelo sensor. Uma outra alimentação não é necessária.

Fig. 22: Colocação do módulo de visualização e configuração na caixa de uma câmara no compartimento do sistema eletrônico

Fig. 23: Colocação do módulo de visualização e configuração na caixa de duas câmaras

- 1 No compartimento do sistema eletrônico
- 2 No compartimento de conexões

Nota:Caso :

Caso se deseje equipar o dispositivo com um módulo de visualização e configuração para a indicação contínua do valor de medição, é necessária uma tampa mais alta com visor.

6.2 Sistema de configuração

Fig. 24: Elementos de visualização e configuração

- 1 Display LC
- 2 Teclas de configuração

Funções das teclas

- Tecla [OK]:
 - Passar para a lista de menus
 - Confirmar o menu selecionado
 - Edição de parâmetros
 - Salvar valor
- Tecla [->]:
 - Mudar a representação do valor de medição
 - Selecionar item na lista
 - Selecionar opções do menu
 - Selecionar a posição a ser editada
- Tecla [+]:

- Alterar o valor de um parâmetro
- Tecla [ESC]:
 - Cancelar a entrada
 - Voltar para o menu superior

Sistema de configuração O aparelho é configurado pelas quatro teclas do módulo de visualização e configuração. No display LC são mostradas opções do menu. A representação anterior mostra a função de cada tecla.

Sistema de configuração - teclas por meio No modelo com Bluetooth do módulo de visualização e configuração pode-se configurar o aparelho opcionalmente através de uma caneta magnética. Esta aciona as quatro teclas do módulo de visualização e configuração passando pela tampa fechada com visor da caixa do sensor.

Fig. 25: elementos de visualização e configuração - com configuração por meio de caneta magnética

- 1 Display LC
- 2 Caneta magnética
- 3 Teclas de configuração
- 4 Tampa com visor

Funções de tempo Apertando uma vez as teclas [+] e [->], o valor editado ou o cursor é alterado em uma casa. Se elas forem acionadas por mais de 1 s, a alteração ocorre de forma contínua.

Se as teclas **[OK]** e **[ESC]** forem apertadas simultaneamente por mais de 5 s, isso provoca um retorno ao menu básico. O idioma do menu é comutado para " *Inglês*".

Aproximadamente 60 minutos após o último acionamento de uma tecla, o display volta automaticamente para a exibição do valor de medição. Os valores ainda não confirmados com **[OK]** são perdidos.

6.3 Visualização de valores de medição

Visualização de valores de medição A tecla [->] permite comutar entre três diferentes modos de visiualização.

No primeiro modo de visualização, é mostrado o valor de medição selecionado em letra grande.

No segundo modo de visualização, são exibidos o valor de medição selecionado e uma representação correspondente por gráfico de barras.

No terceiro modo, são exibidos o valor de medição e um segundo valor selecionável, como, por exemplo, da temperatura.

Com a tecla " **OK**", passa-se na primeira colocação do aparelho em funcionamento para o menu de seleção " *Idioma*".

Seleção do idioma Esta opção do menu serve para selecionar o idioma para mais parametrização.

Com a tecla " [->]" selecione o idioma desejado, " **OK**". confirme a seleção e mude para o menu principal.

É possível fazer posteriormente e a qualquer momento uma mudança da seleção " *colocação em funcionamento - display, idioma do menu*" jederzeit möglich.

6.4 Parametrização - colocação rápida em funcionamento

Para ajustar simples e rapidamente o sensor à tarefa de medição, selecione na tela inicial do módulo de visualização e configuração a opção do menu " *Colocação rápida em funcionamento*".

Selecione os passos com a tecla [->].

Após a conclusão do último passo, é exibido por um curto tempo " Colocação rápida em funcionamento concluída com sucesso".

O retorno à visualização do valor de medição ocorre através das teclas [->] ou [ESC] automaticamente após 3 s

No guia rápido do sensor encontra-se uma descrição de cada passo.

A " configuração ampliada" é descrita no próximo subcapítulo.

6.5 Parametrização - Configuração ampliada

Na " *Configuração ampliada*", podem ser efetuados ajustes abrangentes para pontos de medição que requeiram uma técnica de aplicação mais avançada.

Coloc. rápida en func. Configuração avançada

Menu principal

O menu principal é subdividido em cinco áreas com a seguinte funcionalidade:

Colocação em funcionamento: ajustes, como, por exemplo, nome do ponto de medição, aplicação, unidades, correção de posição, calibração, saída de sinais

Display: Ajustes, por exemplo, do idioma, indicação do valor de medicão, iluminação

Diagnóstico: Informações, por exemplo, sobre o status do aparelho, valores de pico, simulação

Outros ajustes: Data/horário, Reset, Função de cópia

Info: nome do aparelho, versão do software e do hardware, data de calibração de fábrica, características do sensor

Nota:

Para o ajuste ideal da medição, deveriam ser selecionadas consecutivamente e devidamente parametrizadas todas as opções do menu " Colocação em funcionamento". Tente manter a sequência da melhor forma possível.

O procedimento será descrito a seguir.

Estão disponíveis as seguintes opções de submenu:

Inbetriebnahne	Inbetriebnahme
Finwendung	Rbgleich
Einheiten	Dänpfung
Lagekorrektur	Lineeristerung
Abgleich	Bedienung sperren
Dämpfung ▼	▼

As opcões de submenu são descritas a seguir.

6.5.1 Colocação em funcionamento

Nesta opção do menu, pode-se ativar/desativar o sensor secundário para a pressão diferencial eletrônica e selecionar a aplicação.

O VEGABAR 86 pode ser utilizado para a medição da pressão do processo e do nível de enchimento. O ajuste de fábrica é a medição da pressão do processo, que pode ser alterado através deste menu de configuração.

Caso **nenhum** sensor secundário tenha sido conectado, confirme isso através de " Desativar".

A depender da aplicação selecionada, são importantes, portanto, subcapítulos diferentes nos passos de configuração a seguir. Neles se encontram os respectivos passos de configuração.

45043-PT-230914

Inbetriebnahne	
Anwendung	
Einheiten	
Lagekorrektur	
Abgleich	
Dämpfung	

Second device para pressão diferencial eletrônica Desativar V<mark>Ativar</mark>

Digite os parâmetros desejados pelas respectivas teclas, salve o ajuste com **[OK]** ou passe com **[ESC]** e **[->]** para a próxima opção do menu.

Unidades

Nesta opção do menu, são definidas as unidades de calibração do aparelho. A seleção determina a unidade exibida nas opções do menu " *Calibração Mín. (zero)*" e " *Calibração Máx. (span)*".

Unidade de calibração:

Unidade de calibraç	ã0
psi	
mmH20	
√mmHg	
inH20	
inHg	

Caso o nível de enchimento deva ser calibrado com uma unidade de altura, é necessário ajustar mais tarde, na calibração, também a densidade do produto.

É definida ainda a unidade de temperatura do aparelho. A seleção feita determina a unidade indicada nas opções do menu " *Indicador de valor de pico da temperatura*" e "nas variáveis do sinal de saída digital".

Unidade de temperatura:

Digite os parâmetros desejados pelas respectivas teclas, salve o ajuste com **[OK]** ou passe com **[ESC]** e **[->]** para a próxima opção do menu.

Correção de posição

A posição de montagem do aparelho pode deslocar o valor de medição (offset), especialmente em sistemas de diafragma isolador. A correção de posição compensa esse offset, sendo assumido automaticamente o valor de medição atual. No caso de células de medição de pressão relativa, pode ser executado adicionalmente um offset manual.

Nota:

Na aceitação automática do valor de medição atual este último valor não pode ser falsificado através da cobertura pelo produto ou de uma pressão estática.

Na correção de posição manual, o valor de offset pode ser definido pelo usuário. Para tal, selecione a função " *Editar*" e digite o valor desejado.

Salve seus ajustes com [OK] e passe para a próxima opção do menu com [ESC] e [->].

Depois de efetuada a correção de posição, o valor de medição atual terá sido corrigido para 0. O valor de correção é mostrado no display como valor de offset com sinal invertido.

A correção de posição pode ser repetida livremente. Porém, se a soma dos valores de correção ultrapassarem ±50 % da faixa nominal não será mais possível corrigir a posição.

CalibraçãoO VEGABAR 86 mede sempre uma pressão, independentemente da
grandeza do processo selecionada na opção do menu " Aplicação".
Para se obter corretamente a grandeza selecionada para o proces-
so, é necessária uma atribuição a 0 % e 100 % do sinal de saída
(calibração).

Na aplicação "*Nível de enchimento*", é definida, por exemplo, a pressão hidrostática para o reservatório cheio e vazio. Vide exemplo a seguir:

Fig. 26: Exemplo de parametrização Calibração Mín./Máx. Medição do nível de enchimento

- 1 Nível de enchimento mín. = 0 % corresponde a 0,0 mbar
- 2 Nível de enchimento máx. = 100 % corresponde a 490,5 mbar

Se esses valores não forem conhecidos, pode-se calibrar também com níveis de enchimento como, por exemplo, 10 % e 90 %. A partir desses dados, é calculada então a altura de enchimento propriamente dita.

O nível de enchimento atual não é relevante nessa calibração. O ajuste dos níveis mínimo e máximo é sempre efetuado sem alteração do nível atual do produto. Deste modo, esses ajustes já podem ser realizados de antemão, sem que o aparelho tenha que ser montado.

Nota:

1

Se as faixas de ajuste forem ultrapassadas, o valor ajustado não é aplicado. A edição pode ser cancelada com *[ESC]* ou o valor pode ser corrigido para um valor dentro das faixas de ajuste.

A calibração é efetuada devidamente para todas as demais grandezas do processo, por exemplo, pressão do processo, pressão diferencial ou fluxo.

Calibração de zero

Proceda da seguinte maneira:

 Selecione a opção do menu " Colocação em funcionamento" com [->] e confirme com [OK]. Selecione com [->] a opção " Calibrar zero" e confirme com [OK].

 Edite o valor em mbar com [OK] e coloque o cursor na posição desejada através de [->].

- 3. Ajustar o valor em mbar desejado com [+] e salvá-lo com [OK].
- 4. Passar com [ESC] e [->] para a calibração de span

A calibração zero foi concluída

Informação:

A calibração zero desloca o valor da calibração Span. A margem de medição, ou seja, a diferença entre esses valores, permanece inalterada.

Para uma calibração com pressão, digite simplesmente o valor atualmente medido e exibido no display.

Se as faixas de ajuste forem ultrapassadas, aparece no display a mensagem " *Valor limite ultrapassado*". A edição pode ser cancelada com *[ESC]* ou o valor limite exibido pode ser assumido através de *[OK]*.

Calibração do valor Span Proceda da seguinte maneira:

1. Selecione com [->] a opção do menu " Calibração de span" e confirme com [OK].

 Edite o valor em mbar com [OK] e coloque o cursor na posição desejada através de [->].

Ajustar o valor em mbar desejado com [+] e salvá-lo com [OK].

Para uma calibração com pressão, digite simplesmente o valor atualmente medido e exibido no display.

Se as faixas de aiuste forem ultrapassadas, aparece no display a mensagem " Valor limite ultrapassado". A edição pode ser cancelada com [ESC] ou o valor limite exibido pode ser assumido através de [OK].

A calibração zero foi concluída.

de enchimento

Calibração de Mín. - Nível Proceda da seguinte maneira:

Selecione a opcão do menu " Colocação em funcionamento" com [->] e confirme com [OK]. Selecione com [->] a opção " Calibração" e então " Calibração Mín." e confirme em seguida com [OK].

- 2. Edite o valor percentual com [OK] e coloque o cursor na posição desejada através de [->].
- 3. Ajuste o valor percentual desejado com [+] (por exemplo, 10 %) e salve com [OK]. O cursor passa para o valor de pressão.
- 4. Ajustar o respectivo valor de pressão para o nível de enchimento Mín. (por exemplo, 0 mbar).
- Salvar os ajustes com [OK] e passar para a calibração do valor 5. Máx. com [ESC] e [->].

A calibração Mín. foi concluída.

Para uma calibração com produto no reservatório, digite simplesmente o valor atualmente medido e exibido no display.

Calibração Máx. - nível de Proceda da seguinte maneira:

- enchimento
- Selecione com [->] a opção do menu " Calibração máx." e confirme com [OK].

- 2. Edite o valor percentual com [OK] e coloque o cursor na posição desejada através de [->].
- 3. Ajuste o valor percentual desejado com [+] (por exemplo, 90 %) e salve com [OK]. O cursor passa para o valor de pressão.
- 4. Ajustar o valor de pressão para para o reservatório cheio (por exemplo, 900 mbar), adequado para o valor percentual.

5. Confirme os ajustes com [OK]

A calibração Máx. foi concluída.

Para uma calibração com produto no reservatório, digite simplesmente o valor atualmente medido e exibido no display.

Atenuação Para amortecer oscilações do valor de medição condicionadas pelo processo, ajuste aqui uma atenuação de 0 ... 999 s. O passo de ajuste é de 0,1 s.

> O tempo de integração ajustado tem efeito na medição do nível de enchimento e da pressão do processo e em todas as aplicações da medição eletrônica de pressão diferencial.

O ajuste de fábrica é uma atenuação de 0 s.

linearização Uma linearização é necessária para todos os reservatórios, cujo volume não aumente de forma linear em relação à altura do nível de enchimento - por exemplo, no caso de um tanque redondo deitado ou um tanque esférico, quando se deseje a exibição ou emissão do volume. Para esses reservatórios, estão armazenadas as respectivas curvas de linearização. Indique a relação entre a altura do nível de enchimento percentual e o volume do reservatório. A linearização vale para a visualização do valor de medição e para a saída de corrente.

Cuidado:

Na utilização do respectivo sensor como parte de uma proteção contra transbordo conforme WHG (lei alemã de proteção das reservas de água), deve ser observado o seguinte:

Se for selecionada uma curva de linearização, então o sinal de medição não será mais obrigatoriamente linear em relação à altura de enchimento. Isso deve ser considerado pelo usuário especialmente no ajuste do ponto de comutação no emissor de sinais limitadores.

Bloquear/desbloquear configuração

Na opção do menu " *Bloquear/desbloquear configuração*" pode-se proteger os parâmetros do sensor contra alterações não desejadas ou acidentais.

Isso ocorre através do PIN de quatro algarismos.

45043-PT-230914

Com o PIN ativado, é possível executar somente as funções a seguir, sem que seja necessário digitar o PIN:

- Selecionar opções dos menus e visualizar dados
- Passar os dados do sensor para o módulo de visualização e configuração

A liberação da configuração do sensor é suplementarmente possível em qualquer opção do menu, após a introdução do PIN.

Cuidado:

Com o PIN ativo, a configuração via PACTware/DTM e outros sistemas fica bloqueada.

6.5.2 Display

Idioma

Esta opção do menu permite a comutação para o idioma desejado.

Estão disponíveis os seguintes idiomas:

- Alemão
- Inglês
- Francês
- Espanhol
- Russo
- Italiano
- Holandês
- Português
- Japonês
- Chinês
- Polonês
- Tcheco
- Turco

No estado de fornecimento, o VEGABAR 86 está ajustado em inglês.

Valor de exibição 1 e 2 Nesta opção do menu se define qual valor de medição será exibido no display.

O ajuste de fábrica para o valor de exibição é " Por cento lin.".

Formato de exibição 1 e 2 Nesta opção do menu define-se com quantos números de casas decimais o valor de medição é mostrado no display.

O ajuste de fábrica para o formato de exibição é Automaticamente"

lluminação	O módulo de visualização e configuração dispõe de uma iluminação de fundo para o display. Nesta opção do menu, essa iluminação é ligada. O valor da tensão de serviço necessária pode ser consultado no capítulo " <i>Dados técnicos</i> ". Display Idiona do nenu Valor exibido 1 Valor exibido 2 Fornato de visualização ILUMINETED O dispositivo é fornecido com a iluminação de fundo ativada.	
Status do dispositivo	Nesta opção do menu é mostrado o status do dispositivo.	
	Diagnóstico Status do aparelho Stetus do aparelho Ualor de pico DK Valor de pico temp. Simulação Teste de repetição	
	Em caso de erro é exibido o código de erro, por ex. F017, a descrição do erro, por ex. " <i>Margem de calibração muito pequena</i> " e o número com quatro cifras para fins de assistência técnica. O código de erro com a descrição, as informações sobre a causa e sobre como solu- cionar o problema podem ser lidos no capítulo " <i>Asset Management</i> ".	
	6.5.3 Diagnóstico	
Indicador de valor de pico pressão	No sensor são salvos os respectivos valores de medição mínimo e máximo. Os dois valores são exibidos na opção do menu " <i>Indicador de valores de pico pressão</i> ".	
	Em outra janela pode ser efetuado separadamente um reset para os valores de pico.	
	Diagnóstico Pressão Reset valor de pico Status do aparelho Mín0.0015 bar Indic. val. pico pressão Máx. 1.4912 bar Valor de pico temp. Simulação	
Indicador de valores de pico temperatura	No sensor são salvos os valores de medição mínimo e máximo da temperatura da célula de medição e do sistema eletrônico. Na opção do menu " <i>Indicador de valores de pico temperatura</i> " são mostrados ambos os valores.	
	Em outra janela pode ser efetuado um reset para ambos os valores de pico.	
	Diagnóstico Tenp. cél. ned. Status do aparelho Mín. 20.26 °C Indio. val. pico pressão Máx. 26.59 °C Valor de pico temp. Tenp.sist.eletrônico Sinulação Mín 32.80 °C Máx. 38.02 °C Máx.	
Simulação	Nosta opoão do monu ção simulados os valoros do modição. Joso	
Sintulação	permite testar o percurso do sinal pelo sistema de barramento para a	

placa de entrada do sistema de controle central.

Selecione a grandeza de simulação e ajuste o valor numérico deseiado.

Para desativar a simulação, aperte a tecla [ESC] e confirme a mensagem " Desativar simulação" com a tecla [OK].

Cuidado:

Com a simulação em marcha, o valor simulado é emitido como sinal digital. A mensagem de status no âmbito da Função Asset-Management é " Manutenção".

Informação:

O sensor finaliza a simulação automaticamente após 60 minutos.

6.5.4 Outros ajustes

Data/hora

Nesta opção do menu é ajustado o relógio interno do sensor. Não ocorre uma comutação para horário de verão.

Reset

Em um reset, determinados parâmetros ajustados pelo usuário são repostos para os valores de fábrica.

Estão disponíveis as seguintes funções de reset:

Estado de fornecimento: Restauração dos ajustes dos parâmetros para os ajustes do momento da entrega pela fábrica, inclusive dos ajustes específicos do pedido. Uma curva de linearização livremente programável e a memória de valores de medição serão apagadas.

Ajustes básicos: reposição dos parâmetros, inclusive parâmetros especiais, para os valores de default do respectivo aparelho. Uma curva de linearização programada e a memória de valores de medição serão apagadas.

Os valores padrão do aparelho podem ser consultados no capítulo " Vista geral do menu".

Copiar os ajustes do dispositivo

Com esta opção são copiados os ajustes do aparelho. Estão disponíveis as seguintes funções:

- Ler do sensor: Ler os dados do sensor e salvá-los no módulo de visualização e configuração
- Gravar no sensor: salvar os dados do módulo de visualização e configuração no sensor

São salvos agui os seguintes dados e ajustes do módulo de visualização e configuração:

- Todos os dados dos menus " Colocação em funcionamento" e " Displav"
- No menu " Outros aiustes" os pontos " Reset. data/horário"
- A curva de linearização livremente programável

Copiar ajustes apar. Copiar ajustes do aparelho?

Copy from sensor Copy to senso

Os dados copiados são salvos de forma permanente numa memória EEPROM no módulo de visualização e configuração e são mantidos mesmo em caso de falta de tensão. Eles podem ser passados da memória para um ou vários sensores ou guardados como cópia de segurança para uma eventual troca do sistema eletrônico.

Nota:

Por motivos de segurança, antes de salvar os dados no sensor, é controlado se os dados são adequados, sendo mostrados o tipo de sensor dos dados de origem e o sensor de destino. Caso os dados não sejam adequados, é mostrada uma mensagem de erro ou a função é blogueada. Só é possível salvar os dados após a liberação.

Parâmetros especiais Nesta opção do menu, tem-se acesso a uma área protegida, onde se aiusta parâmetros especiais. Em casos raros, pode-se alterar parâmetros para adeguar o sensor a requisitos especiais.

> Altere os ajustes dos parâmetros especiais somente depois de consultar nossa assistência técnica.

6.5.5 Info

Nome do dispositivo

45043-PT-230914

Modelo do aparelho

Nesta opção do menu, podem ser consultados o nome e o número de série do aparelho:

Nesta opção do menu são mostradas as versões do hardware e do software.

Info Nome do aparelho <mark>Versão do aparelho</mark> Data calibr, fábrica Características do sensor

Data da calibração de fábrica

Nesta opção do menu são mostradas a data da calibração de fábrica do sensor e a data da última alteração dos parâmetros do sensor através do módulo de visualização e configuração ou de um PC.

Device ID

Nesta opção do menu, é exibido o número de identificação do aparelho em um sistema Foundation Fieldbus.

Características do sensor Nesta opção do menu, são mostradas características do sensor, como homologação, conexão do processo, vedação, faixa de medição, sistema eletrônico, tipo de caixa, entre outras.

6.6 Vista geral do menu

As tabelas a seguir mostram o menu de configuração do dispositivo. A depender do modelo ou da aplicação, não estão disponíveis todas as opções do menu ou elas podem estar dispostas de forma diferente.

Colocação em funcionamento

Opção de menu	Parâmetros	Valor de default
Aplicação	Aplicação	Nível de enchimento
	Sensor secundário para pressão diferen- cial eletrônica	Desativado
Unidades	Unidade de calibração (m, bar, Pa, psi personalizada)	mbar (com faixas nominais de medição ≤ 400 mbar)
		bar (com faixas nominais de medição ≥ 1 bar)
	Unidade de temperatura (°C, °F)	°C
Correção de posição		0,00 bar

45043-PT-230914

Opção de menu	Parâmetros	Valor de default
Calibração	Calibração Zero/Mín.	0,00 bar
		0,00 %
	Calibração Span/Máx.	Faixa nominal de pressão em bar
		100,00 %
Atenuação	Tempo de integração	1 s
linearização	Linear, Tanque redondo deitado, per- sonalizado	Linear
Bloquear configuração	Bloqueado, desbloqueado	Liberar

Display

Opção de menu	Valor de default
Idioma do menu	Idioma selecionado
Valor de exibição 1	Saída de sinal em %
Valor de exibição 2	Célula de medição de cerâmica: temperatura da célula de medição em °C
	Célula de medição metálica: temperatura do sistema eletrônico em °C
Formato de exibição	Número de casas decimais automático
lluminação	Ligado

Diagnóstico

Opção de menu	Parâmetros	Valor de default
Status do dispositivo		-
Indicador de valor de pico	Pressão	Valor de pressão atualmente medido
Indicador de valor de pi- co temp.	Temperatura	Temperatura atual da célula de medição e do sistema eletrônico
Simulação	Pressão, por cento, saída de corrente, por cento linearizado, temperatura da cé- lula de medição, temperatura do sistema eletrônico	Pressão do processo

Outros ajustes

Opção de menu	Parâmetros	Valor de default
Data/hora		Data atual/hora atual
Reset	estado de fornecimento, ajustes básicos	
Copiar os ajustes do dis- positivo	Ler no sensor, gravar no sensor	
Escalação	Grandeza de escalação	Volume em I
	Formato de escalação	0 % corresponde a 0 l 100 % corresponde a 100 l
Parâmetros especiais	Login de serviço	Nenhum reset

Info

Opção de menu	Parâmetros
Nome do dispositivo	Nome do dispositivo
Modelo do aparelho	Versão do software e hardware
Data da calibração de fá- brica	Data
ID do dispositivo	Número de identificação do aparelho em um sistema Foundation-Fieldbus
Características do sensor	Características específicas do pedido

6.7 Salvar dados de parametrização

Em papel

Recomendamos anotar os dados ajustados, por exemplo, no presente manual, guardando-os bem em seguida. Assim eles estarão à disposição para uso posterior ou para fins de manutenção.

No módulo de visualização e configuração Se o aparelho estiver equipado com um módulo de visualização e configuração, os dados de parametrização podem ser salvos nele. O procedimento correto é descrito na opção do menu " *Copiar ajustes do aparelho*" beschrieben.

7 Colocação em funcionamento com o PACTware

7.1 Conectar o PC

Através do adaptador de interface diretamente no sensor

Fig. 27: Conexão do PC diretamente no sensor via adaptador de interface

- 1 Cabo USB para o PC
- 2 Adaptador de interface VEGACONNECT
- 3 Sensor

7.2 Parametrizar

Pré-requisitos

Para o ajuste de parâmetros do aparelho via PC com Windows, é necessário o software de configuração PACTware com um driver (DTM) apropriado para o aparelho, que atenda o padrão FDT. A versão atual do PACTware e todos os DTMs disponíveis são agrupados em uma DTM Collection. Os DTMs podem ainda ser integrados em outros aplicativos com padrão FDT.

Nota:

Para garantir o suporte de todas as funções do aparelho, deveria ser sempre utilizada a versão mais atual da Coleção DTM. Nem sempre estão disponíveis todas as funções descritas em versões mais antigas do firmware. Para muitos aparelhos, é possível carregar a mais nova versão do software através de nossa homepage. Também está à disposição na internet uma descrição da atualização (update).

Os demais procedimentos de colocação em funcionamento são descritos no manual de instruções " *Coleção DTM/PACTware™*" fornecido em todas as coleções de DTMs e que pode ser baixado na internet. Descrições mais detalhadas podem ser lidas na ajuda on-line do PACTware e dos DTMs da VEGA.

Fig. 28: Exemplo da vista de um DTM

7.3 Salvar dados de parametrização

Recomendamos documentar ou salvar os dados dos parâmetros através do PACTware. Assim eles estarão à disposição para uso posterior ou para fins de manutenção.

8 Colocação em funcionamento com outros sistemas

8.1 Programas de configuração DD

Estão disponíveis para o aparelho descrições na forma de Enhanced Device Description (EDD) para programas de configuração DD, como, por exemplo, AMS™ e PDM.

Os arquivos podem ser baixados em <u>www.vega.com/downloads</u> e " Software".

9 Diagnóstico, Asset Management e Serviço

9.1 Conservar

Manutenção	Se o aparelho for utilizado conforme a finalidade, não é necessária nenhuma manutenção especial na operação normal.	
Medidas contra incrus- tações	Em algumas aplicações, incrustações do produto na membrana podem interferir no resultado da medição. Portanto, a depender do sensor e da aplicação, tomar as devidas medidas de precaução para evitar incrustações acentuadas e principalmente o seu endurecimen- to.	
limpeza	A limpeza contribui para que a placa de características e marcas no aparelho fiquem visíveis. É necessário observar o sequinte:	
	 Utilize apenas produtos de limpeza que não sejam agressivos para a caixa, a placa de características e as vedações. Só utilize métodos de limpeza que seja de acordo com o grau de proteção do aparelho. 	
	9.2 Memória de diagnóstico	
	Das aparelho dispõe de várias memórias para fins de diagnóstico. Os dados permanecem armazenados mesmo se a tensão for interrompida.	
Memória de valores de medição	Podem ser salvos até 100.000 valores de medição em uma memória cíclica do sensor. Cada item salvo possui a data/hora e o respectivo valor de medição.	
	valor de medição.	
	valor de medição. A depender do modelo do aparelho, podem ser salvos, por exemplo, os valores:	
	 valor de medição. A depender do modelo do aparelho, podem ser salvos, por exemplo, os valores: Nível de enchimento Pressão do processo Pressão diferencial Pressão estática Valor percentual Valores escalados Saída de corrente Por cento lin. Temperatura da célula de medição Temperatura do sistema eletrônico 	
	 valor de medição. A depender do modelo do aparelho, podem ser salvos, por exemplo, os valores: Nível de enchimento Pressão do processo Pressão diferencial Pressão estática Valor percentual Valores escalados Saída de corrente Por cento lin. Temperatura da célula de medição Temperatura do sistema eletrônico A memória de valores de medição está ativa no estado de fornecimento e memoriza a cada 10 s o valor de pressão e a temperatura da célula de medição, em caso de pressão diferencial eletrônica, também a pressão estática. 	

também repostos.

controle central com EDD. É dessa forma que os dados são lidos e

Memória de eventosNo sensor, são salvos automaticamente até 500 eventos com carim-
bo de tempo, sem possibilidade de serem apagados. Todos os itens
contêm a data/hora, tipo de evento, descrição do evento e o valor.

Tipos de evento são, por exemplo:

- Alteração de um parâmetro
- Pontos de ligação/desligamento
- Mensagens de status (conforme NE 107)
- Mensagens de erro (conforme NE 107)

Os dados são lidos através de um PC com PACTware/DTM ou do sistema de controle com EDD.

9.3 Função Asset-Management

O aparelho dispõe de uma função de automonitoração e diagnóstico conforme NE 107 e VDI/VDE 2650. Além das mensagens de status apresentadas nas tabelas a seguir, é possível visualizar mensagens de erro ainda mais detalhadas através da opção do menu "*Diagnóstico*" através da respectiva ferramenta de trabalho.

Mensagens de status As mensagens de status são subdividas nas seguintes categorias:

- Avaria
- Controle de funcionamento
- Fora da especificação
- Necessidade de manutenção

e mostradas mais claramente por pictogramas:

Fig. 29: Pictogramas das mensagens de status

- 1 Falha (Failure) vermelha
- 2 Fora da especificação (Out of specification) amarela
- 3 Controle de funcionamento (Function check) laranja
- 4 Necessidade de manutenção (Maintenance) azul

Falha (Failure):

O aparelho emite uma mensagem de falha devido à detecção de uma falha no funcionamento.

A mensagem de status está sempre ativa. O usuário não pode desativá-la.

Controle de funcionamento (Function check):

Estão sendo realizados trabalhos no aparelho, o valor medido está temporariamente inválido (por exemplo, durante uma simulação)

Esta mensagem de status está desativada por meio de default.

Fora da especificação (Out of specification):

O valor medido é incerto, pois ultrapassou a especificação do dispositivo (por exemplo, temperatura da eletrônica).

Esta mensagem de status está desativada por meio de default.

Necessidade de manutenção (Maintenance):

Funcionamento do dispositivo limitado por influências externas. A medição é influenciada, o valor de medição ainda é válido. Planejar a manutenção do dispositivo, pois é de se esperar uma falha no futuro próximo (por exemplo, devido a incrustações/aderências).

Esta mensagem de status está desativada por meio de default.

Failure

Código	Causa	Eliminação do erro	DevSpec
Mensagem de texto			Diagnosis Bits
F013	Sobrepressão ou subpressão	Substituir a célula de medição	Bit 0
Nenhum valor de medi- ção válido disponível	Célula de medição com defeito	Enviar o aparelho para ser con- sertado	
F017	Calibração fora da especificação	Alterar a calibração de acordo	Bit 1
Margem de calibração muito pequena		com os valores limite	
F025	Os marcadores de índice não	Conferir a tabela de linearização	Bit 2
Erro na tabela de linea- rização	se elevam continuamente, por exemplo, pares de valores iló- gicos	Apagar a tabela/criar uma nova	
F036	Erro ou interrupção na atualiza-	Repetir a atualização do software	Bit 3
Não há software execu- tável para o sensor	ção do software	Conferir o modelo do sistema eletrônico	
		Substituir o sistema eletrônico	
		Enviar o aparelho para ser con- sertado	
F040	Defeito no hardware	Substituir o sistema eletrônico	Bit 4
Erro no sistema ele- trônico		Enviar o aparelho para ser con- sertado	
F041	Não há conexão com o sistema	Controlar a ligação entre o sis-	Bit 13
Erro de comunicação	eletrônico do sensor	tema eletrônico do sensor e o sistema eletrônico principal (no modelo separado)	
F042	Nenhuma conexão com sensor	Controlar a conexão entre o	Bit 28 de bity-
Erro de comunicação sensor Secondary	Secondary	sensor Primary e o sensor Se- condary.	te 0 5
F080	Erro geral do software	Cortar a tensão de operação por	Bit 5
Erro geral do software		curto tempo	
F105	O aparelho ainda se encontra na	Aguardar o término da fase de	Bit 6
Valor de medição sendo determinado	fase de inicialização. O valor de medição ainda não pôde ser de- tectado	inicialização	
F113 Erro de comunicação	Erro na comunicação interna do aparelho	Cortar a tensão de operação por curto tempo	Bit 12
		Enviar o aparelho para ser con- sertado	

Código	Causa	Eliminação do erro	DevSpec
Mensagem de texto			Diagnosis Bits
F260 Erro na calibração	Erro na calibração efetuada pe- la fábrica Erro na EEPROM	Substituir o sistema eletrônico Enviar o aparelho para ser con- sertado	Bit 8
F261 Erro no ajuste do apa- relho	Erro na colocação em funciona- mento Erro ao executar um reset	 > Repetir a colocação em funcio- namento Repetir o reset 	Bit 9
F264 Erro de montagem/ colocação em funciona- mento	Ajustes incosistentes (por. ex.: distância, unidades de calibração na aplicação Pressão do proces- so) para aplicação selecionada Configuração de sensor inválida (por. ex.: aplicação de pressão di- ferencial eletrônica com célula de medição de pressão conectada)	Alterar ajustes Alterar configuração de sensor conectado ou aplicação	Bit 10
F265 Falha na função de me- dição	O sensor não efetua nenhuma medição	Executar um reset Cortar a tensão de operação por curto tempo	Bit 11

Tab. 7: Códigos de erro e mensagens de texto, indicação de causa e eliminação

Function check

Código	Causa	Eliminação do erro	DevSpec
Mensagem de texto			Diagnosis Bits
C700	Uma simulação está ativa	Terminar a simulação	Bit 27
Simulação ativa		Aguardar o término automático após 60 min.	

Out of specification

Código Mensagem de texto	Causa	Eliminação do erro	DevSpec Diagnosis Bits
S600 Temperatura inadmissí-	Temperatura do sistema eletrôni- co em faixa não especificada	Controlar a temperatura am- biente	Bit 23
vel do sistema eletrônico		Isolar o sistema eletrônico	
		Utilizar aparelho com faixa de temperatura mais alta	
S603	Tensão de operação abaixo da	Controlar a conexão elétrica	Bit 26
Tensão de alimentação não admissível	faixa especificada	se necessário, aumentar a ten- são de operação	
S605	Pressão do processo medi-	Controlar a faixa de medição no-	Bit 29
Valor de pressão inad-	da abaixo ou acima da faixa de	minal do aparelho	
missível	ajuste	Se necessário, utilizar um apare- lho com faixa de medição maior	

Maintenance

Código	Causa	Eliminação do erro	DevSpec
Mensagem de texto			Diagnosis Bits
M500	Os dados não puderam ser res-	Repetir o reset	Bit 15
Erro no estado de fornecimento	taurados no reset para o estado de fornecimento	Carregar o arquivo XML com os dados do sensor para o aparelho	
M501	Os marcadores de índice não se	Conferir a tabela de linearização	Bit 16
Erro na tabela inati- va de linearização	elevam continuamente, por exem- plo, pares de valores ilógicos	Apagar a tabela/criar uma nova	
M502	Erro de hardware EEPROM	Substituir o sistema eletrônico	Bit 17
Erro na memória de eventos		Enviar o aparelho para ser con- sertado	
M504	Defeito no hardware	Substituir o sistema eletrônico	Bit 19
Erro em um interfa- ce do aparelho		Enviar o aparelho para ser con- sertado	
M507	Erro na colocação em funciona-	Efetuar um reset e repetir a colo-	Bit 22
Erro no ajuste do	mento	cação em funcionamento	
aparelho	Erro ao executar um reset		

Tab. 10: Códigos de erro e mensagens de texto, indicação de causa e eliminação

	9.4 Eliminar falhas
Comportamento em caso de falhas	É de responsabilidade do proprietário do equipamento tomar as devidas medidas para a eliminação de falhas surgidas.
Eliminação de falhas	As primeiras medidas a serem tomadas: • Avaliação de mensagens de erro
	 Verificação do sinal de salda Tratamento de erros de medição
	Outras possibilidades de diagnóstico mais abrangentes são ofere- cidas por um smartphone/tablete com o app de configuração ou um PC/Notebook com o software PACTware e o DTM adequado. Em muitos casos, isso permite identificar as causas e eliminar as falhas.
Comportamento após a eliminação de uma falha	A depender da causa da falha e das medidas tomadas, se necessá- rio, executar novamente os passos descritos no capítulo " <i>Colocar em funcionamento</i> " ou controlar se está plausível e completo.
Hotline da assistência técnica - 24 horas	Caso essas medidas não tenham êxito, ligue, em casos urgentes, pa- ra a hotline da assistência técnica da VEGA - Tel. +49 1805 858550 .
	A hotline está disponível também fora no horário normal de atendi- mento, 7 dias por semana, 24 horas por dia.
	Pelo fato de oferecermos esse serviço para todo o mundo, o aten- dimento é realizado no idioma inglês. O serviço é gratuito. O único custo são as tarifas telefônicas.

9.5 Trocar o módulo do processo no modelo IP68 (25 bar)

No modelo IP68 (25 bar), o usuário pode substituir o módulo do processo diretamente no local. O cabo de ligação e a caixa externa podem continuar a ser utilizados.

Ferramenta necessária:

Chave Allen, tamanho 2

Cuidado:

A substituição só pode ser realizada com a tensão desligada.

Em aplicações em áreas com perigo de explosão, só pode ser utilizada uma peça de reposição com a devida homologação para áreas explosivas.

Cuidado:

Ao efetuar substituição do lado interior das peças, proteger contra sujeira e umidade.

Para a troca, proceda da seguinte maneira:

- 1. Soltar o parafuso de fixação com uma chave Allen
- Puxar o módulo de cabos cuidadosamente do módulo do processo

Fig. 30: VEGABAR 86 como modelo IP68 de 25 bar e saída lateral do cabo, caixa externa

- 1 Módulo de processo
- 2 Conector de encaixe
- 3 Módulo de cabos
- 4 Cabo de ligação
- 5 Caixa externa
- 3. Soltar o conector de encaixe
- 4. Montar o novo módulo do processo no ponto de medição
- 5. Montar novamente o conector de encaixe

- Encaixar o módulo de cabos no módulo do processo e girá-lo para a posição desejada
- 7. Apertar o parafuso de fixação com uma chave Allen

A substituição foi concluída.

9.6 Trocar o módulo elétrônico

Em caso de defeito, o módulo eletrônico pode ser substituído pelo usuário por um módulo do mesmo tipo.

Em aplicações Ex, só podem ser utilizados um aparelho e um módulo eletrônico com a respectiva homologação Ex.

Informações detalhadas sobre como substituir o módulo eletrônico encontram-se no manual de instruções do módulo eletrônico.

9.7 Atualização do software

Para atualizar o software do aparelho, são necessários os seguintes componentes:

- Dispositivo
- Alimentação de tensão
- Adaptador de interface VEGACONNECT
- PC com PACTware
- Software atual do aparelho como arquivo

O software do aparelho atual bem como informações detalhadas para o procedimento encontram-se na área de downloads na nossa homepage: <u>www.vega.com</u>.

As informações para a instalação encontram-se no arquivo baixado.

Cuidado:

Aparelhos com homologações podem estar vinculados a determinadas versões do software. Ao atualizar o software, assegure-se, portanto, de que a homologação não perderá sua validade.

Informações detalhadas encontram-se na área de downloads na homepage <u>www.vega.com</u>.

9.8 Procedimento para conserto

Em nossa homepage, você encontra informações detalhadas sobre como proceder, caso necessite de um reparo.

Gere uma folha de retorno com os dados do seu dispositivo. Isso agiliza o reparo, pois dispensa consultas posteriores desses dados.

Você precisa de:

- O número de série do dispositivo
- Uma breve descrição do problema
- Informações sobre o produto medido

Imprimir o Formulário de retorno gerado.

Limpe o aparelho e empacote-o de forma segura.

Envie o Formulário de retorno impresso e eventualmente uma ficha técnica de segurança juntamente com o dispositivo.

Você encontra o endereço para o envio no Formulário de retorno gerado.

10 Desmontagem

10.1 Passos de desmontagem

Para a desmontagem, efetue os passos indicados no capítulo " *Montar*" e " *Conectar à alimentação de tensão*" de forma análoga, no sentido inverso.

Advertência:

Ao desmontar observe as condições do processo nos reservatórios ou tubulações. Existe o perigo de ferimento por ex. devido a pressões ou temperaturas altas bem como produtos agressivos ou tóxicos. Evite perigos tomando as respectivas medidas de proteção.

10.2 Eliminação de resíduos

Entregue o aparelho à uma empresa especializada em reciclagem e não use para isso os postos de coleta municipais.

Remova antes pilhas eventualmente existente caso seja possível retirá-las do aparelho. Devem passar por uma detecção separada.

Caso no aparelho a ser eliminado tenham sido salvos dados pessoais, apague tais dados antes de eliminar o aparelho

Caso não tenha a possibilidade de eliminar corretamente o aparelho antigo, fale conosco sobre uma devolução para a eliminação.

11 Anexo

11.1 Dados técnicos

Instrução para aparelhos homologados

Para aparelhos homologados (por ex. com homologação Ex) valem os dados técnicos conforme as respectivas instruções de segurança fornecidas. A depender por ex. das condições do processo ou da alimentação de tensão, eles podem divergir dos dados aqui apresentados.

Todos os documentos de homologação podem ser baixados em nosso site.

Materiais, peso, força de tração	
Materiais, com contato com o produ	to
Conexão do processo	316L, PVDF, Duplex (1.4462), titânio
Elemento de medição	316L, PVDF
Módulo de cabos	Aço duplex (1.4462)
Cabo de suspensão	PE (homologação KTW), PUR, FEP
Vedação cabo de suspensão	FKM, FEP
Tubo de ligação	316L
Vedação da célula de medição	FKM (VP2/A) - com homologação FDA e KTW, FFKM (Kalrez 6375), EPDM (A+P 70.10-02)
Membrana	Cerâmica Saphir [®] (> 99,9 % cerâmica Al ₂ O ₃)
Vedação da célula de medição	FKM (VP2/A) - homologação FDA e KTW, FFKM (Kalrez 6375, Perlast G74S, Perlast G75B), EPDM (A+P 70.10-02)
Vedação para conexão do processo (fa	z parte do volume de fornecimento)
 Rosca G1½ (DIN 3852-A), prensa-ca bo do cabo de suspensão G1½ 	a- Klingersil C-4400
Materiais, sem contato com o produ	to
Material de junta célula de medição	Vidro
Grampo de fixação	1.4301
prensa-cabo do cabo de suspensão, união roscada de fixação	316L, PVDF
Caixa do sensor	
- Caixa	Plástico PBT (poliéster), alumínio AlSi10Mg (revestido a pó - Base: poliéster), 316L
- Prensa-cabo	PA, aço inoxidável, bronze
– prensa-cabo: vedação, fecho	NBR, PA
 Vedação da tampa da caixa 	Silicone SI 850 R, NBR sem silicone
 Visor tampa da caixa 	Policarbonato (listado conforme UL-746-C), vidro 1)
 Terminal de aterramento 	316L
Caixa externa - materiais diferentes	
– Caixa e base	Plástico PBT (poliéster), 316L
 Vedação da base 	EPDM

¹⁾ Vidro em caixa em alumínio e aço inoxidável microfundido)

45043-PT-230914

 Vedação embaixo da placa de monta- gem na parede ²⁾ 	EPDM	
 Visor tampa da caixa 	Policarbonato (listado conforme UL-746-C)	
Terminal de aterramento	316Ti/316L	
Cabo de ligação no modelo IP68 (25 bar) ³⁾		
 Revestimento do cabo 	PE, PUR	
 Suporte da placa de características no cabo 	PE duro	
Materiais proteção do transdutor do v	alor de medição	
Tampa de proteção para o transporte transdutor de medição ø 22 mm	PE	
proteção para o transporte e a monta- gem transdutor de medição ø 32 mm	PA	
proteção para o transporte e a monta- gem transdutor de medição PVDF	PE	
Rede de proteção para transporte	PE	
Pesos		
Peso básico	0,7 kg (1.543 lbs)	
Cabo de suspensão	0,1 kg/m (0.07 lbs/ft)	
Tubo de ligação	1,5 kg/m (1 lbs/ft)	
Grampo de fixação	0,2 kg (0.441 lbs)	
prensa-cabo do cabo de suspensão	0,4 kg (0.882 lbs)	
força de tração		
 força de tração Cabo de suspensão 	máx. 500 N (112.4045 lbf)	
Torques de aperto		
Torque máximo de aperto para conexão o	lo processo	

Torque máximo de aperto para conexão do processo		
- G1½	200 Nm (147.5 lbf ft)	
Toque máximo de aperto para prensa-cabos NPT e tubos conduíte		
 Caixa de plástico 	10 Nm (7.376 lbf ft)	
- Caixa de alumínio/aço inoxidável	50 Nm (36.88 lbf ft)	

Grandeza de entrada

Os dados destinam-se a uma visão geral e se referem à célula de medição. São possíveis limitações devido ao material, à forma da conexão do processo e ao tipo de pressão selecionado. Valem os dados indicados na placa de características.⁴⁾

- ²⁾ Apenas em 316L com homologação 3A
- ³⁾ Entre o elemento de medição e a caixa do sistema eletrônico externo.
- ⁴⁾ Os dados de resistência a sobrecargas são válidos à temperatura de referência.

Faixa nominal de medição e capacidade de sobrecarga em bar/kPa

Faixa de medição nominal	sobrecarga	
	Pressão máxima	Pressão mínima
Sobrepressão		
0 +0,025 bar/0 +2,5 kPa	+5 bar/+500 kPa	-0,05 bar/-5 kPa
0 +0,1 bar/0 +10 kPa	+15 bar/+1500 kPa	-0,2 bar/-20 kPa
0 +0,4 bar/0 +40 kPa	+25 bar/+2500 kPa	-0,8 bar/-80 kPa
0 +1 bar/0 +100 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +2,5 bar/0 +250 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +5 bar/0 +500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +10 bar/0 +1000 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +25 bar/0 +2500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
Pressão absoluta	·	
0 1 bar/0 100 kPa	25 bar/2500 kPa	0 bar abs.
0 2,5 bar/0 250 kPa	25 bar/2500 kPa	0 bar abs.
0 +5 bar/0 +500 kPa	25 bar/2500 kPa	0 bar abs.
0 10 bar/0 1000 kPa	25 bar/2500 kPa	0 bar abs.
0 25 bar/0 2500 kPa	25 bar/2500 kPa	0 bar abs.

Faixas nominais de medição e sobrecarga em psi

Faixa de medição nominal	sobrecarga	
	Pressão máxima	Pressão mínima
Sobrepressão		
0 +0.4 psig	+75 psig	-0.7 psig
0 +1.5 psig	+225 psig	-3.0 psig
0 +5 psig	+360 psig	-11.50 psig
0 +15 psig	+360 psig	-14.51 psig
0 +30 psig	+360 psig	-14.51 psig
0 +150 psig	+360 psig	-14.51 psig
0 +300 psig	+360 psig	-14.51 psig
0 +900 psig	+360 psig	-14.51 psig
Pressão absoluta		
0 15 psi	360 psig	0 psi
0 30 psi	360 psig	0 psi
0 150 psi	360 psig	0 psi
0 300 psi	360 psig	0 psi
0 900 psig	360 psig	0 psi

Faixas de ajuste

Os dados referem-se à faixa nominal de medição, não podem ser ajustados valores de pressão mais baixos do que -1 bar

Calibração de Mín./Máx. :

-10 110 %
-20 120 %
-20 +95 %
-120 +120 %
máx. 120 % da faixa nominal
llimitado (recomendado: 20 : 1)

Fase de inicialização

Tempo de inicialização com tensão de operação U _B		
- ≥ 12 V DC	≤9s	
- < 12 V DC	≤ 22 s	
Grandeza de saída		
Sinal de saída	sinal de saída digital, protocolo Foundation Fieldbus	
Taxa de transmissão	31,25 Kbit/s	
Atenuação (63 % da grandeza de entrada)	0 999 s, ajustável	
Channel Numbers		
- Channel 1	Valor do processo	
– Channel 8	Temperatura do sistema eletrônico	
Valor de corrente		
– Aparelhos não-Ex, Ex ia e Ex d	12 mA, ±0,5 mA	

Comportamento dinâmico da saída

grandezas características dinâmicas, confore o produto e a temperatura

Fig. 31: Comportamento em caso de alteração repentina da grandeza do processo. t_{τ} : tempo morto; t_{λ} : tempo de subida; t_{s} : tempo de resposta do salto

- 1 Grandeza do processo
- 2 Sinal de saída

Tempo morto	≤ 50 ms
Tempo de elevação	≤ 150 ms
Tempo de resposta do salto	≤ 200 ms (ti: 0 s, 10 … 90 %)
Atenuação (63 % da grandeza de entrada)	0 999 s, ajustável em opção do menu " atenuação"

Grandeza de saída complementar - Temperatura da célula de medição		
Faixa	-60 +150 °C (-76 +302 °F)	
Resolução	< 0,2 K	
Erro de medição		
– faixa 0 +100 °C (+32 +212 °F)	±2 K	
- Faixa -60 … 0 °C (-76 … +32 °F) und +100 … +150 °C (+212 … +302 °F)	typ. ±4 K	
Saída dos valores de temperatura		
- Visualização	Através do módulo de visualização e configuração	
- Analógico	Através da saída de corrente, da saída de corrente adicional	
- digital	Através do sinal digital de saída (conforme o modelo do sistema eletrônico)	

Condições de referência e grandezas de influência (conforme DIN EN 60770-1)

Condições de referência conforme a norma DIN EN 61298-1

- Temperatura	+15 +25 °C (+59 +77 °F)
 Umidade relativa do ar 	45 75 %
– Pressão do ar	860 1060 mbar/86 106 kPa (12.5 15.4 psig)
Determinação da curva característica	Ajuste do ponto-limite conforme IEC 61298-2
Característica da curva	Linear
Posição de referência para montagem	em pé com a membrana de medição para baixo

Influência da posição de montagem < 0

< 0,2 mbar/20 Pa (0.003 psig)

Diferença de medição (conforme IEC 60770-1)

Os dados referem-se à margem de medição ajustada. Turn down (TD) é a relação entre a faixa nominal de medição/margem de medição ajustada.

Classe de precisão	Não linearidade, histerese e irrepetibi- lidade com TD 1 : 1 até 5 : 1	Não linearidade, histerese e irrepetibi- lidade com TD > 5 : 1			
0,1 %	< 0,1 %	< 0,02 % x TD			

Influência da temperatura do produto

Alteração térmica do sinal zero e da margem da saída

Turn down (TD) é a relação entre a faixa de medição nominal e a margem de medição ajustada.

Célula de medição de cerâmica - padrão

Fig. 32: Erro de temperatura básico F_{TBasis} com TD 1 : 1

O erro de temperatura básico em % do gráfico acima pode elevar-se devido a fatores adicionais, conforme o modelo de célula de medição (fator FMZ) e Turn Down (fator FTD). Os fatores adicionais estão listados nas tabelas a seguir.

Fator adicionao devido ao modelo da célula de medição

Modelo de célu- la de medição	Célula de me	dição - Padrão	célula de medição com compensação climática, conforme a faixa de medição			
	0,1 %	0,1 % (na faixa de medição de 25 mbar)	5 bar, 10 bar, 25 bar	1 bar, 2,5 bar	0,4 bar	
Fator FMZ	1	3	1	2	3	

Fator adicional devido ao Turn Down

O fator adicional FTD é calculado devido ao Turn Down é calculado conforme a seguinte fórmula: $F_{_{TD}} = 0.5 \ x \ TD + 0.5$

Estão listados na tabela, a título de exemplo, valores para Turn Dows típicos.

Turn Down	TD 1 : 1	TD 2,5 : 1	2,5 : 1 TD 5 : 1 T		TD 20 : 1
Fator FTD	1	1,75	3	5,5	10,5

Estabilidade a longo tempo (conforme DIN 16086)

Vale para a respectiva saída de sinal **digital** (por exemplo, HART, Profibus PA) e para a saída **analógica** de corrente 4 ... 20 mA sob condições de referência e se refere à margem de medição ajustada. Turn down (TD) é a relação entre a faixa nominal de medição e a margem de medição ajustada.

Estabilidade a longo tempo sinal zero e margem de saída

Período	Célula	Célula de medição	
	Faixas de medição a partir de	Faixa de medição 0 … +0,025 bar/0 … +2,5 kPa	1ø 17,5 mm
	0 0,1 bar		
	(0 10 kPa)		
Um ano	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD
Cinco anos	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD
Dez anos	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD

Estabilidade a longo tempo sinal zero e margem de saída - modelo com compensação climática

Faixa nominal de pressão em bar/kPa	Faixa nominal de medição em psig	Célula de medição ø 28 mm	Célula de medição ø 17,5 mm		
0 0,4 bar/0 40 kPa	0 6 psig	< (1 % x TD)/ano	< (1,5 % x TD)/ano		
0 1 bar/0 100 kPa	0 15 psig		. (0.075 % x TD)/ene		
0 2,5 bar/0 250 kPa	0 35 psig	< (0,25 % X TD)/ano	< (0,375 % X 1D)/ano		
0 5 bar/0 500 kPa	0 75 psig				
0 10 bar/0 1000 kPa	0 150 psig	< (0,1 % x TD)/ano	< (0,15 % x TD)/ano		
0 25 bar/0 2500 kPa	0 350 psig				

Condições ambientais

Modelo	Temperatura ambiente	Temperatura de transporte e arma- zenamento
Modelo com tubo de ligação	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Modelo com cabo de suspensão FEP, PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Modelo com cabo de suspensão PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)
Modelo IP68 (1 bar) com cabo de li- gação PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Condições do processo

Temperatura do processo

Modelo	Vedação da célula de medição	Temperatura do processo
Cabo de suspensão PE	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
Cabo de suspensão PUR	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
	EPDM (A+P 70.10-02)	
Cabo de suspensão FEP	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Tubo de ligação	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Material do transdutor do valor de	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
medição PVDF	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +60 °C (+14 +140 °F)
Proteção do transdutor do valor de	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
medição PE	EPDM (A+P 70.10-02)	
Flange GFK/barra de vedação PV-	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
DF	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +80 °C (+14 +176 °F)

Pressão do processo

Pressão do processo admissível

Solicitação mecânica5)

Resistência a vibrações

- Cabo de suspensão
- Tubo de ligação

Resistência a choques

vide " Process pressure" na placa de características

4 g com 5 ... 200 Hz conforme EN 60068-2-6 (vibração com ressonância)

1 g (para comprimentos > 0,5 m (1.64 ft), o tubo deve ser apoiado adicionalmente)

50 g, 2,3 ms conforme EN 60068-2-27 (choque mecânico) $^{\rm 6)}$

Dados eletromecânicos - Modelos IP66/IP67 e IP66/IP68 (0,2 bar) 7)

Opções do prensa-cabo

- Entrada do cabo
- Prensa-cabo
- Bujão
- Tampa

M20 x 1,5; ½ NPT M20 x 1,5; ½ NPT (ø do cabo: vide tabela abaixo) M20 x 1,5; ½ NPT ½ NPT

⁵⁾ A depender do modelo do aparelho

6) 2 g no modelo da caixa de aço inoxidável, duas câmaras

7) IP66/IP68 (0,2 bar) só com pressão absoluta.

Material prensa-cabo/emprego de	Diâmetro do cabo						
vedação	5 9 mm	6 12 mm	7 12 mm	10 14 mm			
PA/NBR	√	√	-	√			
Latão, niquelado/NBR	√	√	-	-			
Aço inoxidável/NBR	-	-	√	-			

Seção transversal do fio (terminais com mola)

– Fio ri	gido, fi	o fle	exível		0,2	. 2,5	mm	1 ²	(AWG	i 24	4	14)
								0		_			

- Fio com terminal

0,2 ... 1,5 mm² (AWG 24 ... 16)

Dados eletromecânicos - Modelo IP68 (25 bar)

Cabo de ligação transdutor de medição - caixa externa, dados mecânicos

- Construção	Fios, alívio de carga, capilar de compensação de pres- são, malha de blindagem, folha metálica, revestimento ⁸⁾
 Comprimento padrão 	5 m (16.40 ft)
 Comprimento máximo 	180 m (590.5 ft)
 Raio de curvatura mín. com 25 °C/77 °F 	25 mm (0.985 in)
- Diâmetro	aprox. 8 mm (0.315 in)
- Material	PE, PUR
– Cor	preto, azul
Cabo de ligação transdutor de medição -	caixa externa, dados elétricos
 Seção transversal do fio 	0,5 mm² (AWG n.° 20)
 Besistência do fio 	0.037 O/m (0.012 O/ft)

Dados eletromecânicos - Modelo do cabo de suspensão IP68 (25 bar)

cabo de suspensão, dados mecânicos

- Construção	Fios, alívio de carga, capilar de compensação de pres- são, malha de blindagem, folha metálica, revestimento				
 Comprimento padrão 	5 m (16.40 ft)				
 Comprimento máximo 	250 m (820.2 ft)				
 Raio de curvatura mín. (com 25 °C/77 °F) 	25 mm (0.985 in)				
- Diâmetro	aprox. 8 mm (0.315 in)				
 Cor cabo de suspensão PE 	preto, azul				
 Cor cabo de suspensão PUR/FEP 	Azul				
cabo de suspensão, dados elétricos					
 Seção transversal do fio 	0,5 mm² (AWG n.° 20)				
- Resistência do fio R	0,037 Ω/m (0.012 Ω/ft)				
Interface para a unidade externa de visualização e configuração					

Transmissão de dados

digital (barramento I²C)

⁸⁾ capilar de compensação de pressão não em modelo Ex d.

Cabo	de	liga	icão
oubo	ac	nge	iųuo

Quatro fios

Modelo do sensor	Estrutura do cabo de ligação			
	Comprimento do ca- bo	Cabo padrão	Blindado	
4 20 mA/HART Modbus	50 m	•	-	
Profibus PA, Foundation Fieldbus	25 m	-	•	

Interface para o sensor secundário		
Transmissão de dados	digital (barramento I ² C)	
Estrutura do cabo de ligação	quatro fios, blindado	
Comprimento máx. do cabo	70 m (229.7 ft)	
Relógio integrado		
Formato da data	Dia.Mês.Ano	
Formato da hora	12 h/24 h	
Fuso horário pela fábrica	CET	
Diferença máx. de precisão	10,5 min/ano	
Grandeza de saída complementar - te	mperatura do sistema	
Faixa	-40 +85 °C (-40 +185 °F)	
Resolução	< 0,1 K	
Erro de medição	± 3 K	
Disponibilidade dos valores de temperatu	Ira	
- Visualização	Através do módulo de visualização e configuração	
- Saída	Através do respectivo sinal de saída	
Alimentação de tensão		
Tensão de operação U _B	9 32 V DC	
Tensão de operação $\rm U_{\scriptscriptstyle B}$ com iluminação ligada	13,5 32 V DC	
Alimentação por/quantidade máx. de sensores	Barramento de campo/32	
Ligações ao potencial e medidas de s	eccionamento elétrico no aparelho	
Sistema eletrônico	para tempo de tempo de inicialização	
Separação galvânica		
 entre o sistema eletrônico e e peças metálicas do aparelho 	tensão admissível 500 V AC	
Conexão condutora	Entre terminal de aterramento e conexão metálica do processo	

Medidas de proteção elétrica 9)

Material da caixa	Modelo	Grau de prote- ção conforme IEC 60529	Grau de proteção conforme NEMA
Plástico	Uma câmara		Type 4X
	Duas câmaras		
Alumínio	Uma câmara	IP66/IP67	Туре 4Х
		IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Duas câmaras	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Aço inoxidável (eletropolido)	Uma câmara	IP66/IP67	Type 4X
		IP69K	
Aço inoxidável (fundição fina)	Uma câmara	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Duas câmaras	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Aço inoxidável	Elemento de medição no mode- lo com caixa externa	IP68 (25 bar)	-

Conexão da fonte de alimentação

Redes da categoria de sobretensão III

Altura de uso acima do nível do mar

- padrão

até 2000 m (6562 ft) até 5000 m (16404 ft)

 com sobretensão conectada a montante
 Grau de poluição ¹⁰⁾

classe de proteção (IEC/EN 61010-1)

11.2 Comunicação de aparelhos Foundation Fieldbus

2

A seguir, serão mostrados os detalhes específicos do aparelho requeridos. Maiores informações sobre o Foundation Fieldbus podem ser encontrada no site <u>www.fieldbus.org</u>.

Vista geral

A tabela a seguir dá uma visão geral sobre as versões atuais do aparelho e as respectivas descrições do aparelho, as grandezas características elétricas do sistema de barramento e os blocos funcionais utilizados.

⁹⁾ Grau de proteção IP66/IP68 (0,2 bar) apenas com pressão absoluta, pois não é possível compensação do ar quando o sensor está completamente inundado

¹⁰⁾ No uso dentro do grau de proteção da caixa.

Revisions Data	DD-Revision	Rev_01
	CFF-File	020101.cff
	Device Revision	0101.ff0, 0101.ff5
	Cff-Revision	xx xx 01
	Revisão do software do dispositivo	> 1.1.0
	ITK (Interoperability Test Kit) Number	6.2.0
Electricial Characteristics	Physicial Layer Type	Low-power signaling, bus- -powered, FISCO I.S.
	Input Impedance	> 3000 Ohms between 7.8 KHz - 39 KHz
	Unbalanced Capacitance	< 250 pF to ground from either input terminal
	Output Amplitude	0.8 V P-P
	Electrical Connection	2 Wire
	Polarity Insensitive	Yes
	Max. Current Load	11 mA
	Device minimum operating voltage	9 V
Transmitter Function Blocks	Resource Block (RB)	1
	Transducer Block (TB)	1
	Standard Block (AI)	3
	Execution Time	30 mS
Advanced Function Blocks	Discret Input (DI)	Yes
	PID Control	Yes
	Output Splitter (OS)	Yes
	Signal Characterizer (SC)	Yes
	Integrator	Yes
	Input Selector (IS)	Yes
	Arithmetic (AR)	Yes
Diagnostics	Standard	Yes
	Advanced	Yes
	Performance	No
	Function Blocks Instantiable	No
General Information	LAS (Link Active Scheduler)	Yes
	Master Capable	Yes
	Number of VCRs (Virtual Communication Re- lationships)	47

11.3 Cálculo da diferença total

A diferença total de um transmissor de pressão indica o erro de medição máximo provável na prática. Ela é conhecida também como a diferença de medição prática ou erro de utilização.

Segundo a norma DIN 16086, a diferença total F_{total} é a soma da diferença básica F_{pert} com a estabilidade de longo prazo F_{stab}:

$$\mathsf{F}_{\mathsf{total}} = \mathsf{F}_{\mathsf{perf}} + \mathsf{F}_{\mathsf{stab}}$$

A diferença básica F_{nerf} é, por sua vez, composta da alteração térmica do sinal zero e da margem de saída F_{τ} (erro de temperatura) bem como diferença de medição F_{μ} :

$$\mathsf{F}_{\text{perf}} = \sqrt{((\mathsf{F}_{\text{T}})^2 + (\mathsf{F}_{\text{KI}})^2)}$$

A alteração térmica do sinal zero e a margem de saída F_T estão indicadas no capítulo " Dados técnicos". O erro de temperatura básico F₋ está representado neste capítulo em forma de gráfico. Conforme o modelo da célula de medição e do Turn Down este valor precisa ser adionalmente multiplicado pelos fatores FMZ e FTD:

F₊ x FMZ x FTD

Também estes valores estão indicados no capítulo " Dados técnicos".

Isto vale primeiramente para a saída de sinal digital via HART, Profibus PA ou Foundation Fieldbus ou Modbus.

Em saída 4 ... 20 mA ocorre também uma alteração térmica da saída de corrente F_a:

 $F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$

Para uma melhor visão geral, aqui um resumo dos componentes das fórmulas:

- F_{total}: diferença total
- F_{perf}: diferença básica F_{stab}: estabilidade a longo tempo
- F_r: Alteração térmica do sinal zero e da margem de saída (erro de temperatura) •
- F_{κι}: diferença de medição
- F: Alteração térmica a saída de corrente
- FMZ: Fator adicional modelo de célula de medicão
- ETD: fator adjcional Turn Down

11.4 Exemplo prático

Dados

Medição do nível de enchimento em um reservatório de água, 1.600 mm de altura, corresponde a 0,157 bar (157 kPa), temperatura do produto 50 °C

VEGABAR 86 com faixa de medição de 0,4 bar, diferença de medição < 0,1 %, ø da célula de medição de 28 mm

1. Cálculo do Turn Down

TD = 0.4 bar/0.157 bar, TD = 2.6:1

2. Cálculo erro de temperatura F₊

Os valores necessários podem ser consultados nos Dados técnicos:

Fig. 33: Cálculo do erro de temperatura básico para o exemplo acima F_{TBasis} = 0,15 %:

Turn Down	TD 1 : 1	TD 2,5 : 1	TD 5 : 1	TD 10 : 1	TD 20 : 1
Fator FTD	1	<mark>1,75</mark>	3	5,5	10,5

Tab. 24: Cálculo do fator adicional Turn Down para o exemplo acima: $F_{TD} = \frac{1,75}{1,75}$

Turn Down	TD 1 : 1	TD 2,5 : 1	TD 5 : 1	TD 10 : 1	TD 20 : 1
Fator FTD	1	1,75	3	5,5	10,5

Tab. 25: Cálculo do fator adicional Turn Down para o exemplo acima: $F_{TD} = \frac{1,75}{1,75}$

 $F_{T} = F_{TBasis} \ x \ F_{MZ} \ x \ F_{TD}$ $F_{T} = 0,15 \ \% \ x \ 1 \ x \ 1,75$ $F_{T} = 0,26 \ \%$

† **-, -**

3. Cálculo diferença de medição e estabilidade a longo tempo

Os valores necessários para a diferença de medição $\rm F_{Kl}$ e estabilidade a longo tempo $\rm F_{stab}$ devem ser consultados nos dados técnicos:

Classe de precisão	Não-linearidade, histerese e não-repetibilidade.		
	TD ≤ 5 : 1	TD > 5 : 1	
0,1 %	< 0,1 %	< 0,02 % x TD	

Tab. 26: Cálculo da diferença de medição da tabela: $F_{\kappa_l} = \frac{0,1 \%}{0,1 \%}$

VEGABAR 86

Período	Célula de medição ø 28 mm		Célula de medição
	Todas as faixas de me- dição	Faixa de medição 0 … +0,025 bar/0 … +2,5 kPa	ø 17,5 mm
Um ano	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD
Cinco anos	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD
Dez anos	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD

VEGABAR 87

Período	Todas as faixas de medição	Faixa de medição 0 … +0,025 bar/0 … +2,5 kPa
Um ano	<mark>< 0,05 % x TD</mark>	< 0,1 % x TD
Cinco anos	< 0,1 % x TD	< 0,2 % x TD
Dez anos	< 0,2 % x TD	< 0,4 % x TD

Tab. 27: Determinação da estabilidade a longo tempo na tabela, para um período de um ano: $F_{hasto} = 0.05 \% \text{ x TD} = 0.05 \% \text{ x } 2.6 = \frac{0.13 \%}{2}$

4. Cálculo do desvio total - saída digital

```
- 1. Passo: Exatidão básica F<sub>perf</sub>
```

$$\begin{split} &\mathsf{F}_{\text{perf}} = \sqrt{((\mathsf{F}_{\text{T}})^2 + (\mathsf{F}_{\text{Kl}})^2)} \\ &\mathsf{F}_{\text{T}} = \underbrace{0,26~\%}_{\text{I}} \\ &\mathsf{F}_{\text{kl}} = 0,1~\% \\ &\mathsf{F}_{\text{perf}} = \underbrace{0,28~\%}_{\text{I}} \\ &\mathsf{-2. Passo: desvio total } \mathbf{F}_{\text{total}} \\ &\mathsf{F}_{\text{total}} = \mathbf{F}_{\text{perf}} + \mathbf{F}_{\text{stab}} \\ &\mathsf{F}_{\text{perf}} = 0,28~\% \text{ (resultado do passo 1)} \\ &\mathsf{F}_{\text{stab}} = (0,05~\% \times \text{TD}) \\ &\mathsf{F}_{\text{haste}} = \underbrace{0,05~\% \times 2,5}_{\text{I}} \\ &\mathsf{F}_{\text{total}} = \underbrace{0,13~\%}_{\text{I}} \\ &\mathsf{F}_{\text{total}} = 0,28~\% + 0,13~\% = 0,41~\% \end{split}$$

O desvio total do equipamento de medição é, portanto, de 0,41 %.

Diferença de medição em mm: 0,41 % de 1600 mm = 7 mm

O exemplo mostra que o erro de medição na prática pode ser consideravelmente mais alto do que a exatidão básica. As causas são influência da temperatura e Turn Down.

11.5 Dimensões

Os desenhos cotados a seguir mostram somente uma parte das aplicações possíveis. Desenhos mais detalhados podem ser baixados na nossa página <u>www.vega.com</u> em " *Downloads*" e " *Desenhos*".

Caixa de plástico

Fig. 34: Variantes da caixa com proteção IP66/IP67 (com o módulo de leitura e comando montado, a altura da caixa é aumentada em 9 mm/0,35 in)

- 1 Caixa de uma câmara de plástico
- 2 Caixa de duas câmaras de plástico

Caixa de alumínio

Fig. 35: Variantes da caixa com proteção IP66/IP67 (com o módulo de leitura e comando montado, a altura da caixa é aumentada em 18 mm/0.71 in)

- 1 Alumínio-uma câmara
- 2 Alumínio duas câmaras

Caixa de alumínio com tipo de proteção IP66/IP68 (1 bar)

Fig. 36: Variantes da caixa com grau de proteção IP66/IP68 (1 bar) (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 18 mm/0.71 in)

- 1 Alumínio-uma câmara
- 2 Alumínio duas câmaras

Caixa de aço inoxidável

Fig. 37: Variantes da caixa com proteção IP66/IP67 (com o módulo de leitura e comando montado, a altura da caixa é aumentada em 9 mm/0,35 in)

- 1 Caixa de uma câmara de aço inoxidável (eletropolido)
- 2 Caixa de uma câmara de aço inoxidável (fundição de precisão)
- 3 Caixa de duas câmaras de aço inoxidável (fundição de precisão)

Caixa de aço inoxidável com proteção IP66/IP68 (1 bar)

Fig. 38: Variantes da caixa com grau de proteção IP66/IP68 (1 bar), (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 9 mm/0.35 in bzw. 18 mm/0.71 in)

- 1 Caixa de uma câmara de aço inoxidável (eletropolido)
- 2 Caixa de uma câmara de aço inoxidável (fundição de precisão)
- 3 Caixa de duas câmaras de aço inoxidável (fundição de precisão)

Caixa de aço inoxidável com grau de proteção IP69K

Fig. 39: Modelo da caixa com grau de proteção IP69K (com o módulo de leitura e comando montado, a altura da caixa é aumentada em 9 mm/0,35 in)

1 Caixa de uma câmara de aço inoxidável (eletropolido)

Caixa externa no modelo IP68

Fig. 40: VEGABAR 86, modelo IP68 com caixa externa

- 1 Saída do cabo lateral
- 2 Saída do cabo axial
- 3 Caixa de uma câmara de plástico
- 4 aço inoxidável-caixa de uma câmara
- 5 Vedação 2 mm (0.079 in), (somente com homologação 3A)

VEGABAR 86 - Sensor (32 mm)

Fig. 41: VEGABAR 86 - Sensor (32 mm)

- 1 Grampo de fixação
- 2 Conexão de rosca do cabo de suspensão G11/2, 11/2 NPT
- 3 Rosca G11/2, 11/2 NPT
- 4 Saída de cabo com rosca G1½, 1½ NPT
- L Comprimento total do configurador

VEGABAR 86, sensor do valor de medição (22 mm)

Fig. 42: VEGABAR 86, sensor do valor de medição (22 mm)

- 1 Grampo de fixação
- 2 Conexão de rosca do cabo de suspensão G11/2, 11/2 NPT
- 3 Rosca G1, 1 NPT
- 4 Saída de cabo com rosca G11/2, 11/2 NPT
- L Comprimento total do configurador

VEGABAR 86, modelo de plástico

Fig. 43: VEGABAR 86, modelo de plástico

- 1 PVDF, com união roscada G1½, 1½ NPT
- 2 PVDF, com rosca G11/2, 11/2 NPT
- 3 Revestido de PE, com rosca G11/2, 11/2 NPT
- L Comprimento total do configurador

VEGABAR 86, conexão com flange

Fig. 44: VEGABAR 86, Conexão por flange (exemplo: sensor do valor de medição 32 mm)

- 1 Flange conforme DIN 2501
- 2 Flange conforme ASME B16.5
- L Comprimento total do configurador

VEGABAR 86, conexão asséptica

Fig. 45: VEGABAR 86, conexões assépticas

- 1 Clamp 2" PN 16 (ø 64 mm), (DIN 32676, ISO 2852)
- 2 União roscada para tubo DN 50
- L Comprimento total do configurador

VEGABAR 86, Modelo com rosca

Fig. 46: VEGABAR 86, Modelo com rosca

- 1 Rosca G¹/₂, interna G¹/₄
- 2 Rosca ½ NPT, orifício ø 11 mm
- 3 Rosca G1
- L Comprimento total do configurador

11.6 Proteção dos direitos comerciais

VEGA product lines are global protected by industrial property rights. Further information see <u>www.vega.com</u>.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web <u>www.vega.com</u>.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。

11.7 Marcas registradas

Todas as marcas e nomes de empresas citados são propriedade dos respectivos proprietários legais/autores.

INDEX

A

Acesso para assistência técnica 39 Ajustar data/horário 38 Ajustar visualização 36 Arranjo de medição – Em reservatório aberto 17 Atenuação 35

С

Calibração 34 – Pressão do processo 33 – Unidade 31 Código QR 7 Códigos de erro 48, 49, 50 Compensação de pressão 15, 16, 17 – Ex d 15 Comutar o idioma 36 Conexão elétrica 19 Conserto 52 Copiar os ajustes do sensor 39 Correção de posição 31

D

Device ID 40 Documentação 7

E

EDD (Enhanced Device Description) 45 Eliminação de falhas 50 Exemplo de parametrização 32

Η

Hotline da assistência técnica 50

l

lluminação do display 37 Indicador de valor de pico 37

L

linearização 35

Μ

Manutenção 46 Medição de nível de enchimento 17 Medição de pressão diferencial 8 Memória de valores de medição 46 Menu de configuração 30

Ν

45043-PT-230914

NAMUR NE 107 47

Número de série 7

Ρ

Placa de características 7 Princípio de vedação 10

R Beset

Ajustes básicos 38
Estado de fornecimento 38

S

Simulação 37

V

Valores de default 38

												4
												Ŭ4
												μ τ
												- 2
												909
												74

Printing date:

As informações sobre o volume de fornecimento, o aplicativo, a utilização e condições operacionais correspondem aos conhecimentos disponíveis no momento da impressão.

Reservados os direitos de alteração

© VEGA Grieshaber KG, Schiltach/Germany 2023

CE

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Alemanha

Telefone +49 7836 50-0 E-mail: info.de@vega.com www.vega.com