Operating Instructions

Submersible pressure transmitter with ceramic measuring cell

VEGABAR 86

4 ... 20 mA/HART

Document ID: 45039

Contents

1 About this document				
	1.1 Function			
	1.2 Target group			
	1.3 Symbols used			
2 For your safety				
	2.1 Authorised personnel			
	2.2 Appropriate use			
	2.3 Warning about incorrect use			
	2.4 General safety instructions			
	Conformity NAMUR recommendations			
	NAMUR recommendations Installation and operation in the USA and Canada			
	2.8 Environmental instructions	6		
3	Product description			
3	•			
	3.1 Configuration			
	3.3 Packaging, transport and storage			
	3.4 Accessories			
4	Mounting			
4	· ·			
	General instructions			
	4.3 Level measurement			
	4.4 External housing			
_	Connecting to power supply			
5				
	5.1 Preparing the connection			
	5.3 Single chamber housing			
	5.4 Double chamber housing			
	5.5 Ex d ia double chamber housing			
	5.6 Double chamber housing with VEGADIS-Adapter			
	5.7 Housing IP66/IP68 (1 bar)			
	5.8 External housing			
	5.9 Connection example			
	5.10 Switch-on phase	28		
6	Set up with the display and adjustment module	29		
	6.1 Insert display and adjustment module	29		
	6.2 Adjustment system	30		
	6.3 Measured value indication			
	6.4 Parameter adjustment - Quick setup			
	6.5 Parameter adjustment - Extended adjustment			
	Menu overview Save parameter adjustment data			
	,			
7	Setup with PACTware			
	7.1 Connect the PC			
	7.2 Parameterization			
	7.3 Save parameter adjustment data			
8	Set up with other systems	48		

	8.1	DD adjustment programs	48
	8.2	Field Communicator 375, 475	48
9	Diagr	nosis, asset management and service	49
	9.1	Maintenance	49
	9.2	Diagnosis memory	49
	9.3	Asset Management function	50
	9.4	Rectify faults	
	9.5	Exchange process module on version IP68 (25 bar)	54
	9.6	Exchanging the electronics module	55
	9.7	Software update	55
	9.8	How to proceed if a repair is necessary	55
10	Dism	ount	57
10	Dism 10.1		
10		Dismounting steps	57
	10.1 10.2	Dismounting steps	57 57
	10.1 10.2 Supp	Dismounting steps	57 57
	10.1 10.2 Supp 11.1	Dismounting steps Disposal lement Technical data	57 57 58 58
	10.1 10.2 Supp 11.1 11.2	Dismounting steps Disposal lement Technical data Calculation of the total deviation	57 57 58 58
	10.1 10.2 Supp 11.1 11.2 11.3	Dismounting steps Disposal lement Technical data Calculation of the total deviation Practical example	57 57 58 58 70
	10.1 10.2 Supp 11.1 11.2 11.3 11.4	Dismounting steps Disposal lement Technical data Calculation of the total deviation Practical example Dimensions	57 58 58 70 71
	10.1 10.2 Supp 11.1 11.2 11.3 11.4 11.5	Dismounting steps Disposal lement Technical data Calculation of the total deviation Practical example	57 58 58 70 71 73

Safety instructions for Ex areas:

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2023-09-01

1 About this document

1.1 Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, safety and the exchange of parts. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Document ID

This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, **note**, **tip**: This symbol indicates helpful additional information and tips for successful work.

Note: This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.

Caution: Non-observance of the information marked with this symbol may result in personal injury.

Warning: Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

Danger: Non-observance of the information marked with this symbol results in serious or fatal personal injury.

Ex applications

This symbol indicates special instructions for Ex applications.

List

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Disposal

This symbol indicates special instructions for disposal.

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained and authorized personnel.

During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use

Model VEGABAR 86 is a pressure transmitter for level and gauge measurement.

You can find detailed information about the area of application in chapter " *Product description*".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operating company is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operating company has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by us. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by us must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

2.5 Conformity

The device complies with the legal requirements of the applicable country-specific directives or technical regulations. We confirm conformity with the corresponding labelling.

The corresponding conformity declarations can be found on our homepage.

2.6 NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment
- NE 43 Signal level for fault information from measuring transducers
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see www.namur.de.

2.7 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code

A Class 2 power supply unit has to be used for the installation in the USA and Canada.

2.8 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter " Packaging, transport and storage"
- Chapter " Disposal"

3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:

- VEGABAR 86 pressure transmitter
- Ventilation valves, closing screws depending on version (see chapter " Dimensions")

The further scope of delivery encompasses:

- Documentation
 - Quick setup guide VEGABAR 86
 - Test certificate for pressure transmitters
 - Instructions for optional instrument features
 - Ex-specific " Safety instructions" (with Ex versions)
 - If necessary, further certificates

Information:

Optional instrument features are also described in this operating instructions manual. The respective scope of delivery results from the order specification.

Type label

The type label contains the most important data for identification and use of the instrument:

- Instrument type
- Information about approvals
- Configuration information
- Technical data
- Serial number of the instrument
- QR code for device identification
- Numerical code for Bluetooth access (optional)
- Manufacturer information

Documents and software

To find order data, documents or software related to your device, you have the following options:

- Move to "www.vega.com" and enter in the search field the serial number of your instrument.
- Scan the QR code on the type label.
- Open the VEGA Tools app and enter the serial number under " Documentation".

3.2 Principle of operation

Application area

The VEGABAR 86 is a submersible pressure transmitter for level measurement in wells, basins and open vessels. Its great flexibility through different cable and tube versions allows the instrument to be used in many different applications.

Measured products

Measured products are liquids.

Depending on the instrument version and measurement setup, measured products can also be viscous or contain abrasive substances.

Measured variables

The VEGABAR 86 is suitable for the measurement of the following process variables:

Level

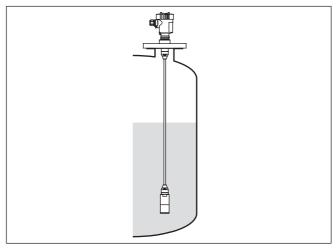


Fig. 1: Level measurement with VEGABAR 86

Electronic differential pressure

Depending on the version, the VEGABAR 86 is also suitable for electronic differential pressure measurement. For this, the instrument is combined with a Secondary Device.

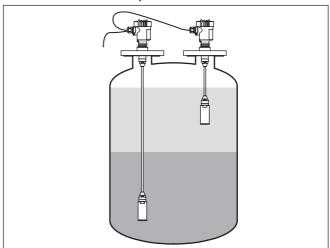


Fig. 2: Electronic differential pressure measurement via a Primary/Secondary combination

You can find detailed information in the operating instructions of the respective Secondary Device.

Measuring system pressure

The sensor element is the CERTEC® measuring cell with robust ceramic diaphragm. The process pressure deflects the ceramic diaphragm and causes a capacitance change in the measuring cell. This capacitance change is converted into an electrical signal and outputted as measured value via the output signal.

The measuring cell is available in two sizes:

- CERTEC® (ø 28 mm) with sensor 32 mm
- Mini-CERTEC® (ø 17.5 mm) with sensor 22 mm

Measuring system temperature

A temperature sensor in the ceramic diaphragm of the CERTEC® or on the ceramic base of the Mini-CERTEC® measuring cell detects the actual process temperature. The temperature value is output via:

- The display and adjustment module
- The current output or the additional current output
- The digital signal output

Even extreme jumps in process temperature are immediately detected by the CERTEC® measuring cell. The values in the ceramic diaphragm are compared with those on the ceramic base body. Within a few measuring cycles, the intelligent sensor electronics compensates for otherwise unavoidable measurement deviations caused by temperature shocks in the range. Depending on the adjusted damping, these cause only slight and brief changes in the output signal. ¹⁾

Pressure types

The measuring cell design depends on the selected pressure type.

Relative pressure: the measuring cell is open to the atmosphere. The ambient pressure is detected in the measuring cell and compensated. It thus has no influence on the measured value.

Absolute pressure: the measuring cell contains vacuum and is encapsulated. The ambient pressure is not compensated and does hence influence the measured value.

Relative pressure, climate-compensated: the measuring cell is evacuated and encapsulated. The ambient pressure is detected through a reference sensor in the electronics and compensated. It thus has no influence on the measured value.

Seal concept

The following illustration shows the installation of the ceramic measuring cell in the sensor as well as the sealing concept.

¹⁾ At temperatures above 100 °C the function is automatically deactivated, at temperatures below 95 °C it is automatically reactivated.

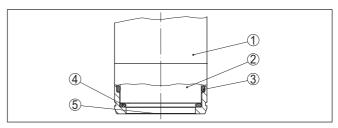


Fig. 3: Front-flush installation of the ceramic measuring cell with double seal

- 1 Housing, sensor
- 2 Measuring cell
- 3 Lateral seal for measuring cell
- 4 Additional, front seal for measuring cell
- 5 Diaphragm

3.3 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- · Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement -Technical data - Ambient conditions"
- Relative moisture 20 ... 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.4 Accessories

The instructions for the listed accessories can be found in the download area on our homepage.

Display and adjustment module

The display and adjustment module is used for measured value indication, adjustment and diagnosis.

The integrated Bluetooth module (optional) enables wireless adjustment via standard adjustment devices.

VEGACONNECT The interface adapter VEGACONNECT enables the connection of

communication-capable instruments to the USB interface of a PC.

Secondary sensors Secondary sensors of VEGABAR series 80 enable in conjunction with

VEGABAR 86 an electronic differential pressure measurement.

VEGADIS 81 The VEGADIS 81 is an external display and adjustment unit for VEGA

plics® sensors.

VEGADIS adapter The VEGADIS adapter is an accessory part for sensors with double

chamber housing. It enables the connection of VEGADIS 81 to the

sensor housing via an M12 x 1 plug.

VEGADIS 82 VEGADIS 82 is suitable for measured value indication and adjustment

of sensors with HART protocol. It is looped into the 4 ... 20 mA/HART

signal cable.

PLICSMOBILE T81 The PLICSMOBILE T81 is an external GSM/GPRS/UMTS radio unit

for transmission of measured values and for remote parameter adjust-

ment of HART sensors.

PLICSMOBILE 81 PLICSMOBILE 81 is an internal GSM/GPRS/UMTS radio unit for

HART sensors for transmitting measured values and for remote

parameterization.

Overvoltage protection The overvoltage arrester B81-35 is used instead of the terminals in

the single or double chamber housing.

Protective cover The protective cover protects the sensor housing against soiling and

intense heat from solar radiation.

Flanges Screwed flanges are available in different versions according to the

following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5,

JIS B 2210-1984, GOST 12821-80.

Welded socket, threaded and hygienic adapter

Welded sockets are used to connect the devices to the process.

Threaded and hygienic adapters enable simple adaptation of devices with standard threaded fittings to process-side hygiene connections.

45039-EN-230914

4 Mounting

4.1 General instructions

Process conditions

Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter " *Technical data*" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- · Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

Protection against moisture

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter " Connecting to power supply")
- Tighten the cable gland or plug connector
- Lead the connection cable downward in front of the cable entry or plug connector

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.

Note:

Make sure that during installation or maintenance no moisture or dirt can get inside the instrument.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Screwing in

Devices with threaded fitting are screwed into the process fitting with a suitable wrench via the hexagon.

See chapter " Dimensions" for wrench size.

Warning:

The housing or the electrical connection may not be used for screwing in! Depending on the device version, tightening can cause damage, e. g. to the rotation mechanism of the housing.

Vibrations

Avoid damages on the device by lateral forces, for example by vibrations. It is thus recommended to fix the devices with process fitting

thread G½ of plastic at the installation site via a suitable measuring instrument holder.

If there is strong vibration at the mounting location, the instrument version with external housing should be used. See chapter " *External housing*".

Permissible process pressure (MWP) - Device

The permissible process pressure range is specified on the type label with "MWP" (Maximum Working Pressure), see chapter " *Configuration*". This applies even if a measuring cell with a measuring range (order-related) higher than the permissible pressure range of the process fitting is installed.

In addition, a temperature derating of the process fitting, e. g. with flanges, can limit the permissible process pressure range according to the respective standard.

Permissible process pressure (MWP) - Mounting accessory

The permissible process pressure range is stated on the type label. The instrument should only be operated with these pressures if the mounting accessory used also fulfils these values. This should be ensured by suitable flanges, welded sockets, tension rings with Clamp connections, sealings, etc.

Temperature limits

Higher process temperatures often mean also higher ambient temperatures. Make sure that the upper temperature limits stated in chapter " *Technical data*" for the environment of the electronics housing and connection cable are not exceeded.

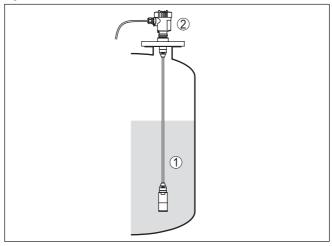


Fig. 4: Temperature ranges

- 1 Process temperature
- 2 Ambient temperature

Transport and mounting protection

Depending on the transmitter, the VEGABAR 86 is supplied with a protective cap or a transport and mounting protection.

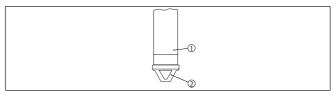


Fig. 5: VEGABAR 86, transport and mounting protection

- 1 Transmitter
- 2 Transport and mounting protection

Remove this protection after mounting and before setting up the instrument.

In case of slightly contaminated measured media, the transport and mounting protection can remain on the instrument as an impact protection during operation.

4.2 Ventilation and pressure compensation

Filter element - Function

The filter element in the electronics housing has the following functions:

- Ventilation of the electronics housing
- Atmospheric pressure compensation (with relative pressure measuring ranges)

Caution:

The filter element causes a time-delayed pressure compensation. When quickly opening/closing the housing cover, the measured value can change for approx. 5 s by up to 15 mbar.

For an effective ventilation, the filter element must be always free from buildup. In case of horizontal mounting, turn the housing so that the filter element points downward after the instrument is installed. This provides better protection against buildup.

Caution:

Do not use a high-pressure cleaner. The filter element could be damaged, which would allow moisture into the housing.

The following paragraphs describe how the filter element is arranged in the different instrument versions.

Filter element - Position

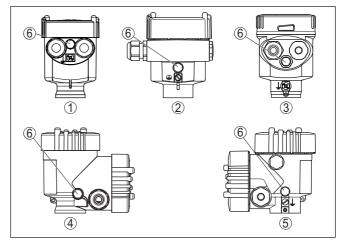


Fig. 6: Position of the filter element

- 1 Plastic, stainless steel single chamber (precision casting)
- 2 Aluminium single chamber
- 3 Stainless steel single chamber (electropolished)
- 4 Plastic double chamber
- 5 Aluminium, stainless steel double chamber housing (precision casting)
- 6 Filter element

With the following instruments a blind plug is installed instead of the filter element:

- Instruments in protection IP66/IP68 (1 bar) ventilation via capillaries in non-detachable cable
- Instruments with absolute pressure

Filter element - Position Ex d version

→ Turn the metal ring in such a way that the filter element points downward after installation of the instrument. This provides better protection against buildup.

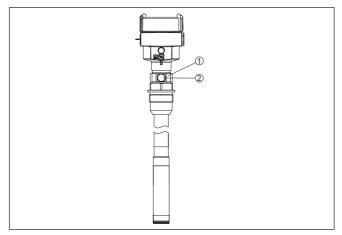


Fig. 7: Position of the filter element - Ex d version

- 1 Rotatable metal ring
- 2 Filter element

With absolute pressure measuring ranges, a blind plug is used instead of the filter element.

Filter element - Position Second Line of Defense

The Second Line of Defense (SLOD) is a second level of the process separation in form of a gas-tight leadthrough in the housing neck, preventing products from penetrating into the housing.

With these instruments, the process assembly is completely encapsulated. An absolute pressure measuring cell is used so that no ventilation is required.

With relative pressure measuring ranges, the ambient pressure is detected and compensated by a reference sensor in the electronics.

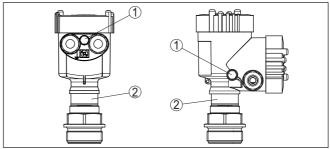


Fig. 8: Position of the filter element - gastight leadthrough

- 1 Filter element
- 2 Gas-tight leadthrough

Filter element - Position IP69K version

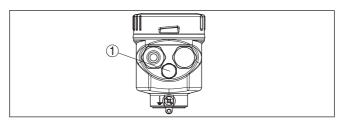


Fig. 9: Position of the filter element - IP69K version

1 Filter element

Instruments with absolute pressure have a blind plug mounted instead of the filter element.

4.3 Level measurement

Measurement setup

Keep the following in mind when setting up the measuring system:

- Do not mount the instrument close to the filling stream or emptying area.
- Mount the instrument so that it is protected against pressure shocks from the stirrer

4.4 External housing

Configuration

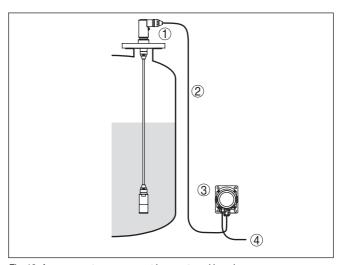


Fig. 10: Arrangement measurement loop, external housing

- 1 Sensor
- 2 Connection cable sensor, external housing
- 3 External housing
- 4 Signal cable

5 Connecting to power supply

Safety instructions

5.1 Preparing the connection

Always keep in mind the following safety instructions:

- Carry out electrical connection by trained, qualified personnel authorised by the plant operator
- If overvoltage surges are expected, overvoltage arresters should be installed

Warning:

Only connect or disconnect in de-energized state.

Voltage supply

Power supply and current signal are carried on the same two-wire cable. The operating voltage can differ depending on the instrument version.

The data for power supply are specified in chapter " Technical data".

Provide a reliable separation between the supply circuit and the mains circuits according to DIN EN 61140 VDE 0140-1.

Power the instrument via an energy-limited circuit acc. to IEC 61010-1, e.g. via Class 2 power supply unit.

Keep in mind the following additional factors that influence the operating voltage:

- Lower output voltage of the power supply unit under nominal load (e.g. with a sensor current of 20.5 mA or 22 mA in case of fault signal)
- Influence of additional instruments in the circuit (see load values in chapter " Technical data")

Connection cable

The instrument is connected with standard two-wire cable without shielding. If electromagnetic interference is expected which is above the test values of EN 61326-1 for industrial areas, shielded cable should be used.

Use cable with round cross section for instruments with housing and cable gland. Use a cable gland suitable for the cable diameter to ensure the seal effect of the cable gland (IP protection rating).

We generally recommend the use of shielded cable for HART multidrop mode.

Cable screening and grounding

If shielded cable is required, we recommend connecting the cable screening on both ends to ground potential. In the sensor, the cable screening is connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the ground potential (low impedance).

In Ex systems, the grounding is carried out according to the installation regulations.

In electroplating plants as well as plants for cathodic corrosion protection it must be taken into account that significant potential differences

exist. This can lead to unacceptably high currents in the cable screen if it is grounded at both ends.

•

Note:

The metallic parts of the instrument (process fitting, sensor, concentric tube, etc.) are connected with the internal and external ground terminal on the housing. This connection exists either directly via the conductive metallic parts or, in case of instruments with external electronics, via the screen of the special connection cable.

You can find specifications on the potential connections inside the instrument in chapter " *Technical data*".

Cable glands

Metric threads:

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

Note:

You have to remove these plugs before electrical connection.

NPT thread:

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Note

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

On plastic housings, the NPT cable gland or the Conduit steel tube must be screwed into the threaded insert without grease.

Max. torque for all housings, see chapter " Technical data".

5.2 Connecting

Connection technology

The voltage supply and signal output are connected via the springloaded terminals in the housing.

Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

Information:

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

Connection procedure

Proceed as follows:

- 1. Unscrew the housing lid
- If a display and adjustment module is installed, remove it by turning it slightly to the left
- Loosen compression nut of the cable gland and remove blind plug

- Remove approx. 10 cm (4 in) of the cable mantle, strip approx.
 1 cm (0.4 in) of insulation from the ends of the individual wires
- 5. Insert the cable into the sensor through the cable entry

Fig. 11: Connection steps 5 and 6

- 1 Single chamber housing
- 2 Double chamber housing
- 6. Insert the wire ends into the terminals according to the wiring plan

Note:

Solid cores as well as flexible cores with wire end sleeves are inserted directly into the terminal openings. In case of flexible cores without end sleeves, press the terminal from above with a small screwdriver, the terminal opening is then free. When the screwdriver is released, the terminal closes again.

- Check the hold of the wires in the terminals by lightly pulling on them
- 8. Connect the shielding to the internal ground terminal, connect the external ground terminal to potential equalisation
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
- 10. Reinsert the display and adjustment module, if one was installed
- 11. Screw the housing lid back on

The electrical connection is finished.

5.3 Single chamber housing

The following illustration applies to the non-Ex, Ex ia and Ex d version.

Electronics and connection compartment

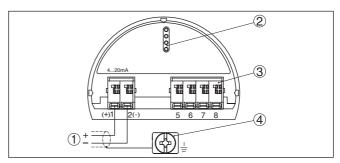


Fig. 12: Electronics and connection compartment - single chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 For external display and adjustment unit or Secondary sensor
- 4 Ground terminal for connection of the cable screening

5.4 Double chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-ia version.

Electronics compartment

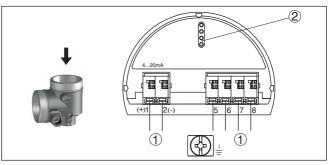


Fig. 13: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 For display and adjustment module or interface adapter

Connection compartment

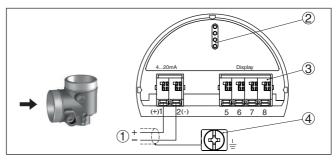


Fig. 14: Connection compartment - double chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 For external display and adjustment unit
- 4 Ground terminal for connection of the cable screening

Supplementary electronics - Additional current output

To make a second measured value available for use, you can use the supplementary electronics " *Additional current output*".

Both current outputs are passive and need a power supply.

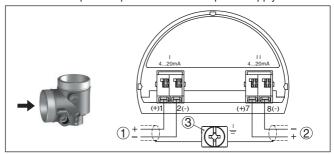


Fig. 15: Terminal compartment, double chamber housing, supplementary electronics " Additional current output"

- 1 First current output (I) Voltage supply and signal output, sensor (HART)
- 2 Additional current output (II) Voltage supply and signal output (without HART)
- 3 Ground terminal for connection of the cable screening

Connection compartment - Radio module PLICSMOBILE 81

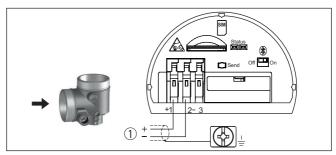


Fig. 16: Connection compartment - Radio module PLICSMOBILE 81

1 Voltage supply

You can find detailed information for connection in the operating instructions " *PLICSMOBILE*".

Connection compartment - Radio module PLICSMOBILE 81 and M12 x 1 plug In this configuration, another sensor is connected via the M12 x 1 plug and also powered via PLICSMOBILE. The sensors must be operated in HART multidrop.

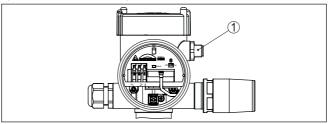


Fig. 17: Sensor with radio module PLICSMOBILE 81 and M12 $\it x$ 1 plug

1 M12 x 1 plug connector for connection of another sensor

Wiring plan - Radio module PLICSMOBILE 81 and M12 x 1 plug

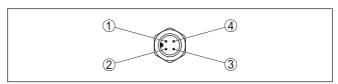


Fig. 18: Top view of the plug connector

Contact pin	Terminal electronics mod- ule additional sensor	Function/Polarity
1	Terminal 1	Power supply/Plus (+)
2	-	Do not use
3	Terminal 2	Power supply/Minus (-)
4	-	Do not use

Connection example - Radio module
PLICSMOBILE 81 and
plics® sensor via VEGA
sensor connection cable

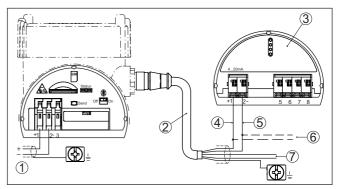


Fig. 19: Connection voltage supply and plics® sensor

- 1 Power supply PLICSMOBILE T81 and connected sensors
- 2 Sensor connection cable
- 3 HART sensor from the plics® series
- 4 Brown cable (+) for sensor power supply/HART communication
- 5 Blue cable (-) for sensor power supply/HART communication
- 6 Connection of additional HART sensors
- 7 Unused wires that must be insulated (not present on Ex version)

5.5 Ex d ia double chamber housing

Electronics compartment

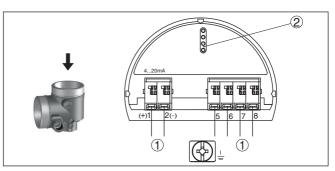


Fig. 20: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 For display and adjustment module or interface adapter

Connection compartment

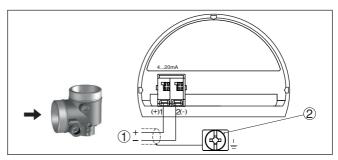


Fig. 21: Connection compartment - Ex d ia double chamber housing

- 1 Voltage supply, signal output
- 2 Ground terminal for connection of the cable screening

5.6 Double chamber housing with VEGADIS-Adapter

Electronics compartment

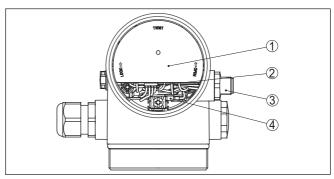


Fig. 22: View to the electronics compartment with VEGADIS adapter for connection of the external display and adjustment unit

- 1 VEGADIS adapter
- 2 Internal plug connection
- 3 M12 x 1 plug connector

Assignment of the plug connector

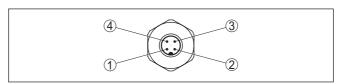


Fig. 23: Top view of the M12 x 1 plug connector

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Contact pin	Colour, connection ca- ble in the sensor	Terminal, electronics module
Pin 1	Brown	5
Pin 2	White	6
Pin 3	Blue	7
Pin 4	Black	8

5.7 Housing IP66/IP68 (1 bar)

Wire assignment, connection cable

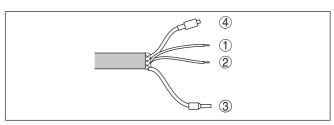


Fig. 24: Wire assignment, connection cable

- 1 Brown (+): to voltage supply or to the processing system
- 2 Blue (-): to voltage supply or to the processing system
- 3 Shielding
- 4 Breather capillaries with filter element

5.8 External housing

Terminal compartment, housing socket

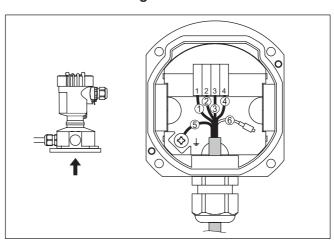


Fig. 25: Connection of the process component in the housing base

- 1 Yellow
- 2 White
- 3 Red
- 4 Black
- 5 Shielding
- 6 Breather capillaries

Electronics and connection compartment for power supply

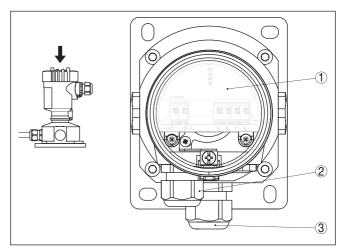


Fig. 26: Electronics and connection compartment

- 1 Electronics module
- 2 Cable gland for voltage supply
- 3 Cable gland for connection cable, transmitter

Electronics and connection compartment

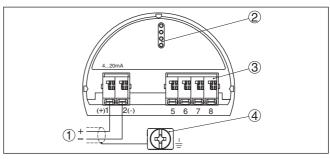


Fig. 27: Electronics and connection compartment - single chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 For external display and adjustment unit or Secondary sensor
- 4 Ground terminal for connection of the cable screening

Connection example, additional current output

5.9 Connection example

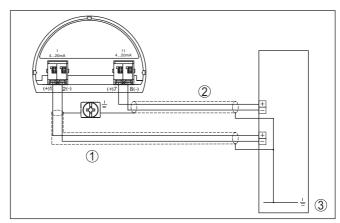


Fig. 28: Connection example VEGABAR 86 additional current output

- 1 Supply and signal circuit, sensor
- 2 Signal circuit, additional current output
- 3 Input card PLC

Sensor	Circuit	Input card PLC
Terminal 1 (+) passive	Supply and signal circuit, sensor	Input 1 terminal (+) active
Terminal 2 (-) passive	Supply and signal circuit, sensor	Input 1 terminal (-) active
Terminal 7 (+) passive	Signal circuit, additional current output	Input 2 terminal (+) active
Terminal 8 (-) passive	Signal circuit, additional current output	Input 2 terminal (-) active

5.10 Switch-on phase

After connecting the instrument to power supply or after a voltage recurrence, the instrument carries out a self-check:

- Internal check of the electronics
- Indication of a status message on the display or PC
- The output signal jumps to the set fault current

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.

6 Set up with the display and adjustment module

6.1 Insert display and adjustment module

The display and adjustment module can be inserted into the sensor and removed again at any time. You can choose any one of four different positions - each displaced by 90°. It is not necessary to interrupt the power supply.

Proceed as follows:

- 1. Unscrew the housing lid
- 2. Place the display and adjustment module on the electronics in the desired position and turn it to the right until it snaps in.
- 3. Screw housing lid with inspection window tightly back on

Disassembly is carried out in reverse order.

The display and adjustment module is powered by the sensor, an additional connection is not necessary.

Fig. 29: Installing the display and adjustment module in the electronics compartment of the single chamber housing

Fig. 30: Installing the display and adjustment module in the double chamber housing

- 1 In the electronics compartment
- 2 In the connection compartment

i

Note:

If you intend to retrofit the instrument with a display and adjustment module for continuous measured value indication, a higher lid with an inspection glass is required.

6.2 Adjustment system

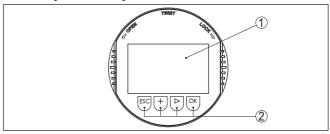


Fig. 31: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

Key functions

[OK] key:

- Move to the menu overview
- Confirm selected menu
- Edit parameter
- Save value

• [->] key:

- Change measured value presentation
- Select list entry
- Select menu items
- Select editing position
- [+] key:

- Change value of the parameter
- [ESC] key:
 - Interrupt input
 - Jump to next higher menu

Adjustment system

The instrument is operated via the four keys of the display and adjustment module. The individual menu items are shown on the LC display. You can find the function of the individual keys in the previous illustration.

Adjustment system - keys via magnetic pen

With the Bluetooth version of the display and adjustment module you can also adjust the instrument with the magnetic pen. The pen operates the four keys of the display and adjustment module right through the closed lid (with inspection window) of the sensor housing.

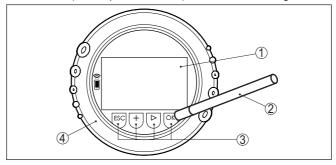


Fig. 32: Display and adjustment elements - with adjustment via magnetic pen

- 1 LC display
- 2 Magnetic pen
- 3 Adjustment keys
- 4 Lid with inspection window

Time functions

When the [+] and [->] keys are pressed quickly, the edited value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

When the *[OK]* and *[ESC]* keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to " *English*".

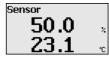
Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with *[OK]* will not be saved.

6.3 Measured value indication

Measured value indication

With the [->] key you can move between three different indication modes.

In the first view, the selected measured value is displayed in large digits.


In the second view, the selected measured value and a respective bargraph presentation are displayed.

In the third view, the selected measured value as well as a second selectable value, e.g. the temperature, are displayed.

With the " **OK**" key you move (during the initial setup of the instrument) to the selection menu " *Language*".

Selection language

In this menu item, you can select the national language for further parameterization.

With the "[->]" button, you can select the requested language, with " *OK*" you confirm the selection and move to the main menu.

You can change your selection afterwards with the menu item " Setup - Display, Menu language".

6.4 Parameter adjustment - Quick setup

To quickly and easily adapt the sensor to the application, select the menu item " *Quick setup*" in the start graphic on the display and adjustment module.

Select the individual steps with the [->] key.

After the last step, " Quick setup terminated successfully" is displayed briefly.

The return to the measured value indication is carried out through the [->] or [ESC] keys or automatically after 3 s

Note:

You can find a description of the individual steps in the quick setup guide of the sensor.

You can find " Extended adjustment" in the next sub-chapter.

6.5 Parameter adjustment - Extended adjustment

For technically demanding measuring points, you can carry out extended settings in " Extended adjustment".

Main menu

The main menu is divided into five sections with the following functions:

Setup: Settings e. g. for measurement loop name, application, units, position correction, adjustment, signal output, disable/enable operation

Display: Settings, e.g., for language, measured value display, lighting **Diagnosis:** Information, for example, of device status, peak indicator, simulation

Additional adjustments: date/time, reset, copy function

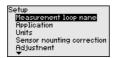
Info: Instrument name, hardware and software version, calibration date, sensor features

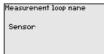
Note:

For optimum setting of the measuring point, the individual submenu items in the main menu item " *Setup*" should be selected one after the other and provided with the correct parameters. If possible, go through the items in the given sequence.

The submenu points are described below.

6.5.1 Setup


Measurement loop name


In the menu item " Sensor TAG" you edit a twelve-digit measurement loop designation.

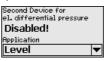
You can enter an unambiguous designation for the sensor, e.g. the measurement loop name or the tank or product designation. In digital systems and in the documentation of larger plants, a singular designation must be entered for exact identification of individual measuring points.

The available digits include:

- Letters from A ... Z
- Numbers from 0 ... 9
- Special characters +, -, /, -

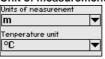
Application

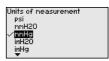
In this menu item you activate/deactivate the Secondary Device for electronic differential pressure and select the application.


VEGABAR 86 can be used for process pressure and level measurement. The setting in the delivery status is " *Level*". The mode can be changed in this adjustment menu.

If you have connected **no** Secondary Device, you confirm this with " *Deactivate*".

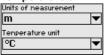
Depending on the selected application, different subchapters in the following adjustment steps are important. There you can find the individual adjustment steps.

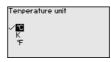



Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

In this menu item, the adjustment units of the instrument are determined. The selection determines the unit displayed in the menu items "Min. adjustment (Zero)" and "Max. adjustment (Span)".

Unit of measurement:

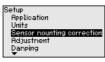




If the level should be adjusted in a height unit, the density of the medium must also be entered later during the adjustment.

In addition, the temperature unit of the instrument is specified. The selection determines the unit displayed in menu items " *Peak indicator, temperature*" and "in the variables of the digital output signal".

Temperature unit:



Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Position correction

Units

Especially with chemical seal systems, the installation position of the instrument can shift (offset) the measured value. Position correction compensates this offset. In the process, the actual measured value is taken over automatically. With relative pressure measuring cells a manual offset can also be carried out.

i

Note:

If the current measured value is automatically accepted, it must not be falsified by medium coverage or static pressure.

With the manual position correction, the offset value can be determined by the user. Select for this purpose the function " *Edit*" and enter the requested value.

Save your settings with [OK] and move with [ESC] and [->] to the next menu item.

After the position correction is carried out, the actual measured value is corrected to 0. The corrective value appears with an inverse sign as offset value in the display.

The position correction can be repeated as often as necessary. However, if the sum of the corrective values exceeds ±50 % of the nominal measuring range, then no position correction is possible.

Parameterization example VEGABAR 86 always measures pressure independently of the process variable selected in the menu item " Application". To output the selected process variable correctly, an allocation of the output signal to 0 % and 100 % must be carried out (adjustment).

> During adjustment, the pressure is entered e.g. for the level with full and empty vessel, see following example:

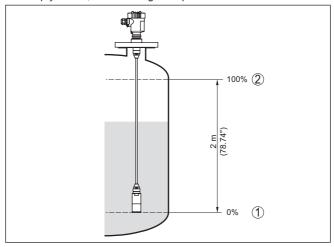


Fig. 33: Parameter adjustment example Min./max. adjustment, level measurement

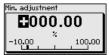
- Min. level = 0 % corresponds to 0.0 mbar
- 2 Max. level = 100 % corresponds to 196.2 mbar

If these values are not known, an adjustment with filling levels of e.g. 10 % and 90 % is also possible. By means of these settings, the real filling height is then calculated.

The actual product level during the adjustment is not important, because the min./max. adjustment is always carried out without changing the product level. These settings can be made ahead of time without the instrument having to be installed.

Note:

If the adjustment ranges are exceeded, the entered value will not be accepted. Editing can be interrupted with [ESC] or corrected to a value within the adjustment ranges.


Min. adjustment - Level

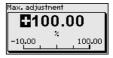
Proceed as follows:

 Select the menu item " Setup" with [->] and confirm with [OK]. Now select with [->] the menu item " Adjustment", then " Min. adjustment" and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- Set the requested percentage value (e.g. 10 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- Enter the pressure value corresponding to the min. level (e.g. 0 mbar).
- Save settings with [OK] and move with [ESC] and [->] to the max. adjustment.

The min. adjustment is finished.

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.


Max. adjustment - Level

Proceed as follows:

 Select with [->] the menu item " Max. adjustment" and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- 3. Set the requested percentage value (e.g. 90 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- Enter the pressure value for the full vessel (e.g. 900 mbar) corresponding to the percentage value.
- 5. Save settings with [OK]

The max, adjustment is finished.

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

Damping

To damp process-dependent measured value fluctuations, set an damping of 0 \dots 999 s in this menu item. The increment is 0.1 s.

The set damping is effective for level and process pressure measurement as well as for all applications of electronic differential pressure measurement.

The default setting is a damping of 0 s.

Linearisation

A linearization is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. a horizontal cylindrical or spherical tank - and the indication or output of the volume is required. Corresponding linearization curves are preprogrammed for these vessels. They represent the correlation between the level percentage and vessel volume. The linearization applies to the measured value indication and the current output.

With flow measurement and selection "Linear" display and output (percentage/current) are linear to "Differential pressure". This can be used, for example, to feed a flow computer.

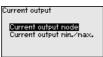
With flow measurement and selection " Extraction by root" display and output (percentage/current) are linear to " Flow". 2)

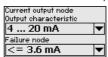
With flow in two directions (bidirectional) a negative differential pressure is also possible. This must already be taken into account in menu item " *Min. adjustment flow*".

Caution:

Note the following, if the respective sensor is used as part of an overfill protection system according to WHG:

If a linearisation curve is selected, the measuring signal is no longer necessarily linear to the filling height. This must be considered by the user especially when setting the switching point on the limit signal transmitter.

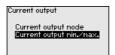

Current output

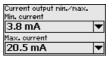

In the menu items " *Current output*" you determine the properties of the current output.

On instruments with integrated additional current output, the properties for each current output are adjusted individually. The following descriptions apply to both current outputs.

Current output (mode)

In the menu item " Current output mode" you determine the output characteristics and reaction of the current output in case of fault.


The default setting is output characteristics $4 \dots 20$ mA, fault mode < 3.6 mA.


Current output (min./ max.)

In the menu item " Current output Min./Max.", you determine the reaction of the current output during operation.

2) The device assumes an approximately constant temperature and static pressure and converts the differential pressure into the flow rate via the characteristic curve extracted by root.


The default setting is min. current 3.8 mA and max. current 20.5 mA.

Lock/Unlock adjustment

In the menu item " Lock/unlock adjustment" you safeguard the sensor parameters against unauthorized or unintentional modifications.

This is done by entering a four-digit PIN.

With active PIN, only the following adjustment functions are possible without entering a PIN:

- Select menu items and show data
- Read data from the sensor into the display and adjustment module

Releasing the sensor adjustment is also possible in any menu item by entering the PIN.

Caution:

With active PIN, adjustment via PACTware/DTM and other systems is also blocked.

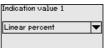
6.5.2 Display

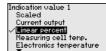
Language

This menu item enables the setting of the requested national language.

The following languages are available:

- German
- English
- French
- Spanish
- Russian
- Italian
- Dutch
- Portuguese
- Japanese
- Chinese
- Polish
- Czech
- Turkish


In delivery status, the VEGABAR 86 is set to English.


Display value 1 and 2

In this menu item, you define which measured value is displayed.

The setting in the delivery status for the display value is " *Lin. percent*".

Display format 1 and 2

In this menu item you define the number of decimal positions with which the measured value is displayed.

The setting in the delivery status for the display format is " Automatic".

Backlight

The display and adjustment module has a backlight for the display. In this menu item you can switch on the lighting. You can find the required operating voltage in chapter " *Technical data*".

In delivery status, the lighting is switched on.

6.5.3 Diagnostics

Device status

In this menu item, the device status is displayed.

In case of error, e.g. the error code F017, e.g. the error description " Adjustment span too small" and a four digit figure are displayed for service purposes. You can find the error codes with description, reason as well as rectification in chapter " Asset Management".

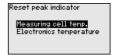

Peak indicator, pressure

The respective min. and max. measured values are saved in the sensor. The two values are displayed in menu item " *Peak indicator, pressure*".

In another window you can carry out a reset of the peak values separately.

Pressure Min. -0.0015 bar Max. 1.4912 bar

Peak indicator, temperature

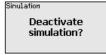

The respective min. and max. measured values of the measuring cell and the electronics temperature are stored in the sensor. In menu item "*Peak indicator, temperature*", both values are displayed.

In another window you can carry out a reset of the two peak values separately.

Measuring cell temp.
Min. 20.26 ℃
Max. 26.59 ℃
Electronics temperature
Min. – 32.80 ℃
Max. 38.02 ℃

Simulation

In this menu item you can simulate measured values. This allows the signal path to be tested, e.g. through downstream indicating instruments or the input card of the control system.



Select the requested simulation variable and set the requested value.

To deactivate the simulation, you have to push the **[ESC]** key and confirm the message " *Deactivate simulation*" with the **[OK]** key.

Caution:

During simulation, the simulated value is output as 4 ... 20 mA current value and with instruments 4 ... 20 mA/HART in addition as digital HART signal. The status message within the context of the asset management function is " *Maintenance*".

Note:

Without manual deactivation, the sensor terminates the simulation automatically after 60 minutes.

6.5.4 Additional adjustments

Date/Time

In this menu item, you adjust the internal clock of the sensor. There is no adjustment for summer/winter (daylight saving) time.

Reset

After a reset, certain parameter adjustments made by the user are reset.

The following reset functions are available:

Delivery status: Restores the parameter settings at the time of shipment from the factory, incl. the order-specific settings. Any user-

defined linearisation curve as well as the measured value memory are deleted.

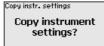
Basic settings: Resets the parameter settings, incl. special parameters, to the default values of the respective instrument. Any programmed linearisation curve as well as the measured value memory are deleted.

i

Note:

You can find the default values of the device in chapter " Menu over-view".

Copy instrument settings


The instrument settings are copied with this function. The following functions are available:

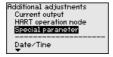
- Read from sensor: Read data from sensor and store into the display and adjustment module
- Write into sensor: Store data from the display and adjustment module back into the sensor

The following data or settings for adjustment of the display and adjustment module are saved:

- All data of the menu " Setup" and " Display"
- In the menu " Additional adjustments" the items " Reset, Date/ Time"
- The user-programmable linearization curve

The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible electronics exchange.

•


Note:

Before the data are saved in the sensor, a safety check is carried out to determine if the data match the sensor. In the process the sensor type of the source data as well as the target sensor are displayed. If the data do not match, a fault message is outputted or the function is blocked. The data are saved only after release.

Special parameters

In this menu item you gain access to the protected area where you can enter special parameters. In exceptional cases, individual parameters can be modified in order to adapt the sensor to special requirements.

Change the settings of the special parameters only after having contacted our service staff.

Scaling (1)

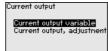
In menu item " Scaling" you define the scaling variable and the scaling unit for the level value on the display, e.g. volume in I.

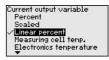
Scaling (2)

In menu item " Scaling (2)" you define the scaling format on the display and the scaling of the measured level value for 0 % and 100 %.

Scaling	
100 % =	100
	1
0 % =	0
	1

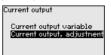
Current output

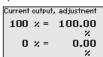

In the menu items " *Current output*" you determine the properties of the current output.


On instruments with integrated additional current output, the properties for each current output are adjusted individually. The following descriptions apply to both current outputs.

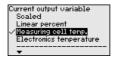
Current output (meas. variable)

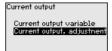
In menu item " *Current output, variable*" you specify which measured variable is output via the current output.





Current output (adjustment)

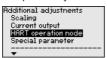

Depending on the selected measured variable, you assign in the menu item " *Current output, adjustment*" the measured values that 4 mA (0 %) and 20 mA (100 %) of the current output refer to.



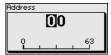
If the measuring cell temperature is selected as measured variable, then e.g. 0 °C refers to 4 mA and 100 °C to 20 mA.

Current	output,	adjustment
100	× =	100.00
		°C
0	% =	0.00
		°C

HART mode

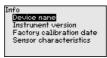

The sensor offers the HART modes " *Analogue current output*" and " *Fix current (4 mA)*". In this menu item you determine the HART mode and enter the address with Multidrop mode.

In the mode "Fixed current output" up to 63 sensors can be operated on one two-wire cable (Multidrop operation). An address between 0 and 63 must be assigned to each sensor.



If you select the function " *Analogue current output*" and also enter an address number, you can output a 4 ... 20 mA signal in Multidrop mode.

In the mode " Fixed current (4 mA)" a fixed 4 mA signal is output independently of the actual level.

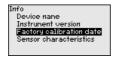


The setting in the delivery status is " Analogue current output" and the address 00.

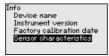
6.5.5 Info

Device name

In this menu item, you can read out the instrument name and the instrument serial number:


Instrument version

In this menu item, the hardware and software version of the sensor is displayed.


Factory calibration date

In this menu item, the date of factory calibration of the sensor as well as the date of the last change of sensor parameters are displayed via the display and adjustment module or via the PC.

Sensor characteristics

In this menu item, the features of the sensor such as approval, process fitting, seal, measuring range, electronics, housing and others are displayed.

6.6 Menu overview

The following tables show the adjustment menu of the instrument. Depending on the instrument version or application, all menu items may not be available or some may be differently assigned.

Setup

Menu item	Parameter	Default value
Measurement loop name	19 alphanumeric characters/special characters	Sensor
Application	Level, process pressure	Level
	Secondary Device for electronic differential pressure 3)	Deactivated
Units	Adjustment unit (m, bar, Pa, psi user-defined)	mbar (with nominal measuring range ≤ 400 mbar)
		bar (with nominal measuring ranges ≥ 1 bar)
	Temperature unit (°C, °F)	°C
Position correction	Offset	0.00 bar
Adjustment	Zero/Min. adjustment	0.00 bar
		0.00 %
	Span/Max. adjustment	Nominal measuring range in bar
		100.00 %
Damping	Integration time	1 s
Linearisation	Linear, cylindrical tank, user-defined	Linear
Current output	Current output - Mode	
	Output characteristics: 4 20 mA, 20 4 mA	4 20 mA
	Failure mode: ≤ 3.6 mA, ≥ 20 mA, last measured value	≤ 3.6 mA
	Current output - Min./Max.	
	Min. current: 3.8 mA, 4 mA	3.8 mA
	Max. current: 20 mA, 20.5 mA	20.5 mA
Lock adjustment	Blocked, released	Released

Display

Menu item	Default value	
Menu language	Selected language	
Displayed value 1	Pressure	
Displayed value 2	Ceramic measuring cell: Measuring cell temperature in °C	
	Metallic measuring cell: Electronics temperature in °C	
Display format	Number of positions after the decimal point, automatically	
Backlight	Switched on	

³⁾ Parameter only active if the instrument is connected to the Secondary Device

Diagnostics

Menu item	Parameter	Default value
Device status		-
Peak indicator	Pressure	Current pressure measured value
Peak indicator temp.	Temperature	Actual measuring cell and electronic temperature
Simulation	Pressure, percent, current output, linearized percent, measuring cell tem- perature, electronics temperature	Process pressure

Additional adjustments

Menu item	Parameter	Default value
Date/Time		Actual date/Actual time
Reset	Delivery status, basic settings	
Copy instrument settings	Read from sensor, write into sensor	
Scaling	Scaling size	Volume in I
	Scaling format	0 % corresponds to 0 I
		100 % corresponds to 100 I
Current output	Current output - Meas. variable	Lin. percent - Level
	Current output - Adjustment	0 100 % correspond to 4 20 mA
Current output 2	Current output - Meas. variable	Measuring cell temperature (ceramic measuring cell)
	Current output - Adjustment	0 100 °C correspond to 4 20 mA
HART mode	HART address, current output	Address 00, analogue current output
Special parameters	Service-Login	No reset

Info

Menu item	Parameter
Device name	VEGABAR 86
Instrument version	Hardware and software version
Factory calibration date	Date
Sensor characteristics	Order-specific characteristics

6.7 Save parameter adjustment data

On paper

We recommended writing down the adjustment data, e.g. in this operating instructions manual, and archiving them afterwards. They are thus available for multiple use or service purposes.

In the display and adjustment module

If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item " *Copy device settings*".

7 Setup with PACTware

7.1 Connect the PC

Via the interface adapter directly on the sensor

Fig. 34: Connection of the PC directly to the sensor via the interface adapter

- 1 USB cable to the PC
- 2 Interface adapter VEGACONNECT
- 3 Sensor

Via the interface adapter and HART

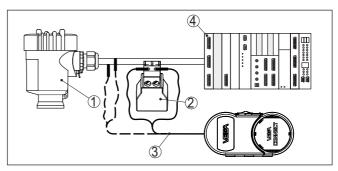


Fig. 35: Connecting the PC via HART to the signal cable

- 1 Sensor
- 2 HART resistance 250 Ω (optional depending on evaluation)
- 3 Connection cable with 2 mm pins and terminals
- 4 Processing system/PLC/Voltage supply
- 5 Interface adapter, for example VEGACONNECT 4

i

Note:

With power supply units with integrated HART resistance (internal resistance approx. 250 Ω), an additional external resistance is not necessary. This applies, e.g. to the VEGA instruments VEGAMET 381, VEGAMET 391. Common Ex separators are also usually equipped with a sufficient current limiting resistance. In such cases, the interface adapter can be connected parallel to the 4 ... 20 mA cable (dashed line in the previous illustration).

7.2 Parameterization

Prerequisites

For parameter adjustment of the instrument via a Windows PC, the configuration software PACTware and a suitable instrument driver

(DTM) according to FDT standard are required. The latest PACTware version as well as all available DTMs are compiled in a DTM Collection. The DTMs can also be integrated into other frame applications according to FDT standard.

•

Note:

To ensure that all instrument functions are supported, you should always use the latest DTM Collection. Furthermore, not all described functions are included in older firmware versions. You can download the latest instrument software from our homepage. A description of the update procedure is also available in the Internet.

Further setup steps are described in the operating instructions manual " *DTM Collection/PACTware*" attached to each DTM Collection and which can also be downloaded from the Internet. Detailed descriptions are available in the online help of PACTware and the DTMs.

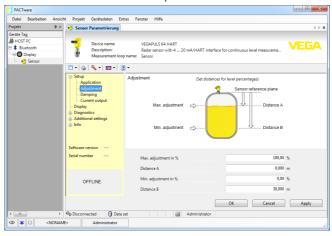


Fig. 36: Example of a DTM view

7.3 Save parameter adjustment data

We recommend documenting or saving the parameterisation data via PACTware. That way the data are available for multiple use or service purposes.

8 Set up with other systems

8.1 DD adjustment programs

Device descriptions as Enhanced Device Description (EDD) are available for DD adjustment programs such as, for example, AMS™ and PDM

The files can be downloaded at www.vega.com/downloads under "Software".

8.2 Field Communicator 375, 475

Device descriptions for the instrument are available as EDD for parameterisation with Field Communicator 375 or 475.

Integrating the EDD into the Field Communicator 375 or 475 requires the "Easy Upgrade Utility" software, which is available from the manufacturer. This software is updated via the Internet and new EDDs are automatically accepted into the device catalogue of this software after they are released by the manufacturer. They can then be transferred to a Field Communicator.

In the HART communication, the Universal Commands and a part of the Common Practice Commands are supported.

9 Diagnosis, asset management and service

9.1 Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Precaution measures against buildup

In some applications, product buildup on the diaphragm can influence the measuring result. Depending on the sensor and application, take precautions to ensure that heavy buildup, and especially a hardening thereof, is avoided.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

9.2 Diagnosis memory

The instrument has several memories available for diagnostic purposes. The data remain there even in case of voltage interruption.

Measured value memory

Up to 100,000 measured values can be stored in the sensor in a ring memory. Each entry contains date/time as well as the respective measured value.

Depending on the instrument version, values that can be stored are for example:

- Level
- Process pressure
- Differential pressure
- Static pressure
- Percentage value
- Scaled values
- Current output
- Lin. percent
- Measuring cell temperature
- Electronics temperature

When the instrument is shipped, the measured value memory is active and stores pressure value and measuring cell temperature every 10 s, with electronic differential pressure also the static pressure.

The requested values and recording conditions are set via a PC with PACTware/DTM or the control system with EDD. Data are thus read out and also reset.

Event memory

Up to 500 events are automatically stored with a time stamp in the sensor (non-deletable). Each entry contains date/time, event type, event description and value.

Event types are for example:

- Modification of a parameter
- Switch-on and switch-off times
- Status messages (according to NE 107)
- Error messages (according to NE 107)

The data are read out via a PC with PACTware/DTM or the control system with EDD.

9.3 Asset Management function

The instrument features self-monitoring and diagnostics according to NE 107 and VDI/VDE 2650. In addition to the status messages in the following tables there are more detailed error messages available under the menu item " *Diagnostics*" via the respective adjustment module.

Status messages

The status messages are divided into the following categories:

- Failure
- Function check
- Out of specification
- Maintenance required

and explained by pictographs:

Fig. 37: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance required blue

Malfunction (Failure):

Due to a malfunction in the instrument, a fault signal is output.

This status message is always active. It cannot be deactivated by the user.

Function check:

The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default.

Out of specification:

The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default.

Maintenance required:

Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in

maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default.

Failure

Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
F013	Gauge pressure or low pressure	Exchange measuring cell	Byte 5, Bit 0 of
No valid measured value available	Measuring cell defective	Send instrument for repair	Byte 0 5
F017	Adjustment not within specifi-	Change the adjustment accord-	Byte 5, Bit 1 of
Adjustment span too small	cation	ing to the limit values	Byte 0 5
F025	Index markers are not continu-	Check linearization table	Byte 5, Bit 2 of
Error in the linearization table	ously rising, for example illogical value pairs	Delete table/Create new	Byte 0 5
F036	Failed or interrupted software	Repeat software update	Byte 5, Bit 3 of
no operable sensor	update	Check electronics version	Byte 0 5
software		Exchanging the electronics	
		Send instrument for repair	
F040	Hardware defect	Exchanging the electronics	Byte 5, Bit 4 of Byte 0 5
Error in the electronics		Send instrument for repair	Буте 0 5
F041 Communication error	No connection to the sensor electronics	Check connection between sensor and main electronics (with separate version)	-
F042	No connection to the Second-	Check connection between Pri-	-
Communication error Secondary sensor	ary sensor	mary and Secondary sensor	
F080	General software error	Disconnect operating voltage	Byte 5, Bit 5 of
General software error		briefly	Byte 0 5
F105	The instrument is still in the	Wait for the end of the switch-	Byte 5, Bit 6 of
Measured value is determined	switch-on phase, the measured value could not yet be determined	on phase	Byte 0 5
F113	Error in the internal instrument	Disconnect operating voltage	Byte 4, Bit 4 of
Communication error	communication	briefly	Byte 0 5
		Send instrument for repair	
F260	Error in the calibration carried out in the factory	Exchanging the electronics	Byte 4, Bit 0 of Byte 0 5
Error in the calibration	Error in the EEPROM	Send instrument for repair	Dyte 0 5
F261	Error during setup	Repeat setup	Byte 4, Bit 1 of
Error in the instrument settings	Error when carrying out a reset	Repeat reset	Byte 0 5

Code Text message	Cause	Rectification	DevSpec State in CMD 48
F264 Installation/Setup error	Inconsistent settings (e.g.: distance, adjustment units with application process pressure) for selected application Invalid sensor configuration (e.g.: application electronic differential pressure with connected differential pressure measuring cell)	Modify settings Modify connected sensor con- figuration or application	Byte 4, Bit 2 of Byte 0 5
F265 Measurement function disturbed	Sensor no longer carries out a measurement	Carry out a reset Disconnect operating voltage briefly	Byte 4, Bit 3 of Byte 0 5

Function check

Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
C700	A simulation is active	Finish simulation	"Simulation Active"
Simulation active		Wait for the automatic end after 60 mins.	in "Standardized Status 0"

Tab. 10: Error codes and text messages, information on causes as well as corrective measures

Out of specification

Code Text message	Cause	Rectification	DevSpec State in CMD 48
S600 Impermissible electronics temperature	Temperature of the electronics in the non-specified range	Check ambient temperature Insulate electronics	Byte 23, Bit 0 of Byte 14 24
S603 Impermissible operating voltage	Operating voltage below specified range	Check electrical connection If necessary, increase operating voltage	-
S605 Impermissible pressure value	Measured process pressure be- low or above the adjustment range	Check nominal measuring range of the instrument If necessary, use an instrument with a higher measuring range	-

Maintenance

Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
M500	The data could not be restored	Repeat reset	Bit 0 of
Error in the delivery status	during the reset to delivery sta- tus	Load XML file with sensor data into the sensor	Byte 14 24
M501	Index markers are not continu-	Check linearization table	Bit 1 of
Error in the non-active linearisation table	ously rising, for example illogical value pairs	Delete table/Create new	Byte 14 24

Code Text message	Cause	Rectification	DevSpec State in CMD 48
M502 Error in the event memory	Hardware error EEPROM	Exchanging the electronics Send instrument for repair	Bit 2 of Byte 14 24
M504 Error at a device interface	Hardware defect	Exchanging the electronics Send instrument for repair	Bit 3 of Byte 14 24
M507 Error in the instrument settings	Error during setup Error when carrying out a reset	Carry out reset and repeat setup	Bit 4 of Byte 14 24

9.4 Rectify faults

Reaction when malfunction occurs

The operator of the system is responsible for taking suitable measures to rectify faults.

Fault rectification

The first measures are:

- Evaluation of fault messages
- Checking the output signal
- Treatment of measurement errors

A smartphone/tablet with the adjustment app or a PC/notebook with the software PACTware and the suitable DTM offer you further comprehensive diagnostic possibilities. In many cases, the causes can be determined in this way and the faults eliminated.

4 ... 20 mA signal

Connect a multimeter in the suitable measuring range according to the wiring plan. The following table describes possible errors in the current signal and helps to eliminate them:

Error	Cause	Rectification
4 20 mA signal not stable	Fluctuating measured value	Set damping
4 20 mA signal missing	Electrical connection faulty	Check connection, correct, if necessary
	Voltage supply missing	Check cables for breaks; repair if necessary
	Operating voltage too low, load resistance too high	Check, adapt if necessary
Current signal greater than 22 mA, less than 3.6 mA	Sensor electronics defective	Replace device or send in for repair depending on device version

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter " *Setup*" must be carried out again or must be checked for plausibility and completeness.

24 hour service hotline

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. **+49 1805 858550**.

The hotline is also available outside normal working hours, seven days a week around the clock.

Since we offer this service worldwide, the support is provided in English. The service itself is free of charge, the only costs involved are the normal call charges.

9.5 Exchange process module on version IP68 (25 bar)

On version IP68 (25 bar), the user can exchange the process module on site. Connection cable and external housing can be kept.

Required tools:

Hexagon key wrench, size 2

Caution

The exchange may only be carried out in the complete absence of line voltage.

In Ex applications, only a replacement part with appropriate Ex approval may be used.

Caution:

During exchange, protect the inner side of the parts against contamination and moisture.

Proceed as follows when carrying out the exchange:

- 1. Losen the fixing screw with the hexagon key wrench
- 2. Carefully detach the cable assembly from the process module

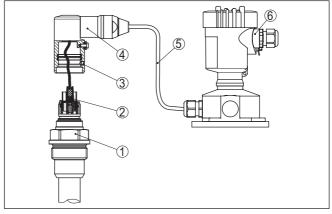


Fig. 38: VEGABAR 86 in IP68 version, 25 bar and lateral cable outlet, external housing

- 1 Process module
- 2 Plug connector
- 3 Cable assembly
- 4 Connection cable
- 5 External housing
- Loosen the plug connector
- 4. Mount the new process module on the measuring point

- 5. Plug the connector back in
- Mount the cable assembly on the process module and turn it to the desired position
- 7. Tighten the fixing screw with the hexagon key wrench

The exchange is finished.

9.6 Exchanging the electronics module

In case of a defect, the user can replace the electronics module with another one of identical type.

In Ex applications, only instruments and electronics modules with appropriate Ex approval may be used.

You can find detailed information you need to carry out an electronics exchange in the handbook of the electronics module.

9.7 Software update

The following components are required to update the instrument software:

- Instrument
- Voltage supply
- Interface adapter VEGACONNECT
- PC with PACTware
- Current instrument software as file

You can find the current instrument software as well as detailed information on the procedure in the download area of our homepage: www.vega.com.

You can find information about the installation in the download file.

Caution:

Instruments with approvals can be bound to certain software versions. Therefore make sure that the approval is still effective after a software update is carried out.

You can find detailed information in the download area at www.vega.com.

9.8 How to proceed if a repair is necessary

On our homepage you will find detailed information on how to proceed in the event of a repair.

So that we can carry out the repair quickly and without queries, generate a instrument return form there with the data of your device.

You will need:

- The serial number of the instrument
- A short description of the problem
- Details of the medium

Print the generated instrument return form.

Clean the instrument and pack it damage-proof.

Send the printed instrument return form and possibly a safety data sheet together with the device.

You will find the address for the return on the generated instrument return form.

10 Dismount

10.1 Dismounting steps

To remove the device, carry out the steps in chapters " *Mounting*" and " *Connecting to power suplly*" in reverse.

Warning:

When dismounting, pay attention to the process conditions in vessels or pipelines. There is a risk of injury, e.g. due to high pressures or temperatures as well as aggressive or toxic media. Avoid this by taking appropriate protective measures.

10.2 Disposal

Pass the instrument on to a specialised recycling company and do not use the municipal collecting points.

Remove any batteries in advance, if they can be removed from the device, and dispose of them separately.

If personal data is stored on the old device to be disposed of, delete it before disposal.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

11 Supplement

11.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

Materials, weights, tensile force

Materials, wetted parts

Process fitting 316L, PVDF, Duplex (1.4462), Titanium

Transmitter 316L, PVDF
Cable assembly Duplex (1.4462)

Suspension cable PE (KTW-approved), FEP, PUR

Seal, suspension cable FKM, FEP
Connection tube 316l

Measuring cell seal FKM (VP2/A) - FDA and KTW approved, FFKM

(Kalrez 6375), EPDM (A+P 70.10-02)

Diaphragm Sapphire-ceramic® (> 99.9 % Al₂O₃ ceramic)

Measuring cell seal FKM (VP2/A) - FDA and KTW approved, FFKM

(Kalrez 6375, Perlast G74S, Perlast G75B), EPDM

(A+P 70.10-02)

Seal for process fitting (in the scope of delivery)

connection for suspension cable G11/2

- Thread G1½ (DIN 3852-A), screw Klingersil C-4400

Materials, non-wetted parts

Joining material measuring cell Glass
Straining clamp 1.4301
Screw connection for suspension cable, 316L, PVDF

lock fitting Sensor housing

Housing
 Plastic PBT (Polyester), Aluminium AlSi10Mg (powder-

coated, basis: Polyester), 316L

Cable gland
 PA, stainless steel, brass

Cable gland: Seal, closure
 NBR, PA

Seal, housing lid
 Silicone SI 850 R, NBR silicone-free
 Inspection window housing cover
 Polycarbonate (UL-746-C listed), glass 49

Ground terminal 316L

External housing - deviating materials

Housing and socket
 Plastic PBT (Polyester), 316L

⁴⁾ Glass with Aluminium and stainless steel (precision casting) housing

Socket seal
 Seal below wall mounting plate 5
 EPDM

Inspection window housing cover
 Polycarbonate (UL-746-C listed)

Ground terminal 316Ti/316L

Connection cable with IP68 (25 bar) version 6)

Cable coverType label support on cablePE hard

Materials, transmitter protection

Transport protective cap, transmitter PE

ø 22 mm

Transport and mounting protection, trans- PA

mitter ø 32 mm

Transport and mounting protection, trans- PE

mitter PVDF

transport protection net PE

Weights

 Basic weight
 0.7 kg (1.543 lbs)

 Suspension cable
 0.1 kg/m (0.07 lbs/ft)

 Connection tube
 1.5 kg/m (1 lbs/ft)

 Straining clamp
 0.2 kg (0.441 lbs)

 Screw connection for suspension cable
 0.4 kg (0.882 lbs)

Tensile force

- Tensile force suspension cable max. 500 N (112.4045 lbf)

Torques

Max. torque for process fitting

- G1½ 200 Nm (147.5 lbf ft)

Max. torque for NPT cable glands and Conduit tubes

Plastic housing
 Aluminium/Stainless steel housing
 Mm (7.376 lbf ft)
 Mm (7.376 lbf ft)
 Mm (36.88 lbf ft)

Input variable

The specifications are only an overview and refer to the measuring cell. Limitations due to the material and version of the process fitting as well as the selected pressure type are possible. The specifications on the nameplate apply. 7)

Nominal measuring ranges and overload capability in bar/kPa

Nominal range	Overload capability	
	Maximum pressure	Minimum pressure
Gauge pressure		

Only for 316L with 3A approval

⁶⁾ Between transmitter and external electronics housing.

⁷⁾ Data on overload capability apply for reference temperature.

Nominal range	ominal range Overload capability	
	Maximum pressure	Minimum pressure
0 +0.025 bar/0 +2.5 kPa	+5 bar/+500 kPa	-0.05 bar/-5 kPa
0 +0.1 bar/0 +10 kPa	+15 bar/+1500 kPa	-0.2 bar/-20 kPa
0 +0.4 bar/0 +40 kPa	+25 bar/+2500 kPa	-0.8 bar/-80 kPa
0 +1 bar/0 +100 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +2.5 bar/0 +250 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +5 bar/0 +500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +10 bar/0 +1000 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +25 bar/0 +2500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
Absolute pressure		
0 1 bar/0 100 kPa	25 bar/2500 kPa	0 bar abs.
0 2.5 bar/0 250 kPa	25 bar/2500 kPa	0 bar abs.
0 +5 bar/0 +500 kPa	25 bar/2500 kPa	0 bar abs.
0 10 bar/0 1000 kPa	25 bar/2500 kPa	0 bar abs.
0 25 bar/0 2500 kPa	25 bar/2500 kPa	0 bar abs.

Nominal measuring ranges and overload capacity in psi

Nominal range	Overlo	ad capability
	Maximum pressure	Minimum pressure
Gauge pressure		1
0 +0.4 psig	+75 psig	-0.7 psig
0 +1.5 psig	+225 psig	-3.0 psig
0 +5 psig	+360 psig	-11.50 psig
0 +15 psig	+360 psig	-14.51 psig
0 +30 psig	+360 psig	-14.51 psig
0 +150 psig	+360 psig	-14.51 psig
0 +300 psig	+360 psig	-14.51 psig
0 +900 psig	+360 psig	-14.51 psig
Absolute pressure		
0 15 psi	360 psig	0 psi
0 30 psi	360 psig	0 psi
0 150 psi	360 psig	0 psi
0 300 psi	360 psig	0 psi
0 900 psig	360 psig	0 psi

Adjustment ranges

Specifications refer to the nominal measuring range, pressure values lower than -1 bar cannot be set

Min./Max. adjustment:

Percentage value-10 ... 110 %Pressure value-20 ... 120 %

Zero/Span adjustment:

ZeroSpan-20 ... +95 %-120 ... +120 %

Difference between zero and span max. 120 % of the nominal range
 Max. permissible Turn Down Unlimited (recommended 20:1)

Switch-on phase

Start-up time with operating voltage U_p

 $- \ge 12 \text{ V DC}$ ≤ 9 s - < 12 V DC ≤ 22 s Starting current (for run-up time) ≤ 3.6 mA

Output variable

For details on the operating voltage see chapter "Voltage supply"

Output signal 4 ... 20 mA/HART

Range of the output signal 3.8 ... 20.5 mA/HART (default setting)

Fulfilled HART specification 7.3
Signal resolution 0.3 µA

Fault signal, current output (adjustable) ≤ 3.6 mA, ≥ 21 mA, last measured value 8)

Max, output current 21.5 mA

Load See load resistance under Power supply

Starting current ≤ 10 mA for 5 ms after switching on, ≤ 3.6 mA

Damping (63 % of the input variable), 0 ... 999 s

adiustable

HART output values according to HART 7 (default setting) 9)

First HART value (PV)
 Linear percentage value

Second HART value (SV)
 Measuring cell temperature (ceramic measuring cell)

Third HART value (TV)
 Pressure

Fourth HART value (QV)
 Electronics temperature

Output variable - Additional current output

For details on the operating voltage see chapter "Voltage supply"

Output signal 4 ... 20 mA (passive)

Range of the output signal 3.8 ... 20.5 mA (default setting)

Signal resolution 0.3 µA

Fault signal, current output (adjustable) Last valid measured value, ≥ 21 mA, ≤ 3.6 mA

Max. output current 21.5 mA

- 8) Last measured value not possible with SIL.
- ⁹⁾ The output values can be assigned individually.

Starting current ≤ 10 mA for 5 ms after switching on, ≤ 3.6 mA Load Load resistor, see chapter "Voltage supply"

Damping (63 % of the input variable),

adjustable

0...999 s

Dynamic behaviour output

Dynamic characteristics depending on medium and temperature

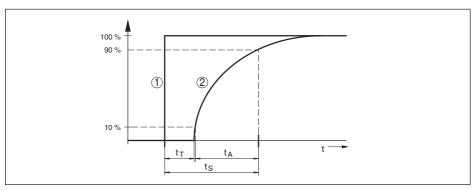


Fig. 39: Behaviour in case of sudden change of the process variable. t.; dead time; t.; rise time; t.; jump response time

- Process variable
- Output signal

Dead time < 50 msRise time ≤ 150 ms

Step response time \leq 200 ms (ti: 0 s, 10 ... 90 %)

Damping (63 % of the input variable) 0 ... 999 s, adjustable via menu item " Damping"

Additional output parameter - Measuring cell temperature

Range -60 ... +150 °C (-76 ... +302 °F)

Resolution < 0.2 K

Deviation

- Range of 0 ... +100 °C ±2 K (+32 ... +212 °F)

- Range of -60 ... 0 °C (-76 ... +32 °F) typ. ±4 K and +100 ... +150 °C

(+212 ... +302 °F)

Output of the temperature values

- Indication Via the display and adjustment module

- Analogue Via the current output, the additional current output

- Digital Via the digital output signal (depending on the electron-

ics version)

Reference conditions and influencing variables (according to DIN EN 60770-1)

Reference conditions according to DIN EN 61298-1

- Temperature +15 ... +25 °C (+59 ... +77 °F)

- Relative humidity 45 ... 75 %

- Air pressure 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

 $< \pm 150 \, \mu A$

Determination of characteristics Limit point adjustment according to IEC 61298-2

Characteristic curve Linear

Reference installation position upright, diaphragm points downward

Influence of the installation position < 0.2 mbar/20 Pa (0.003 psig)

Deviation in the current output due to strong, high-frequency electromagnetic

fields acc. to EN 61326-1

Deviation (according to IEC 60770-1)

Applies to the **digital** signal output (HART, Profibus PA, Foundation Fieldbus) as well as to the **analogue** current output 4 ... 20 mA and refers to the set span. Turn down (TD) is the ratio "nominal measuring range/set span".

The specified values correspond to the value F₁₁ in chapter " Calculation of the total deviation".

•	Non-linearity, hysteresis and repeatability with TD 1 : 1 up to 5 : 1	Non-linearity, hysteresis and repeatability with 5:1
0.1 %	< 0.1 %	< 0.02 % x TD

Influence of the medium or ambient temperature

Thermal change zero signal and output span through product temperature

Applies to the **digital** signal output (HART, Profibus PA, Foundation Fieldbus) as well as to the **analogue** current output 4 ... 20 mA and refers to the set span. Turn down (TD) is the ratio "nominal measuring range/set span".

The thermal change of the zero signal and output span corresponds to the value F_{τ} in chapter " Calculation of the total deviation (according to DIN 16086)".

Ceramic measuring cell - Standard

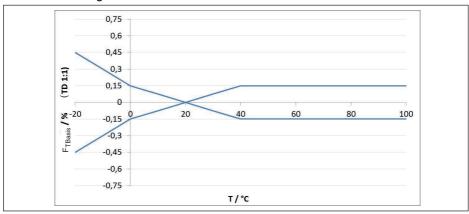


Fig. 40: Basic temperature error F_{TBasis} at TD 1:1

The basic temperature error in % from the above graphic can increase due to the additional factors, depending on the measuring cell version (factor FMZ) and the Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through measuring cell version

Measuring cell	Measuring cell - Standard		Measuring cell climate-compensated, depending on measuring range		
version	0.1 %	0.1 % (with measuring range 25 mbar)	5 bar, 10 bar, 25 bar	1 bar, 2.5 bar	0.4 bar
Factor FMZ	1	3	1	2	3

Additional factor through Turn Down

The additional factor $F_{\tau\tau}$ through Turn down is calculated according to the following formula:

$$F_{TD} = 0.5 \times TD + 0.5$$

In the table, example values for typical Turn downs are listed.

Turn Down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Thermal change current output through ambient temperature

Applies also to the analogue 4 ... 20 mA current output and refers to the set span.

Thermal change, current output < 0.05 %/10 K, max. < 0.15 %, each with -40 ... +80 °C

(-40 ... +176 °F)

The thermal change of the current output corresponds to the value F_a in chapter " Calculation of the total deviation (according to DIN 16086)".

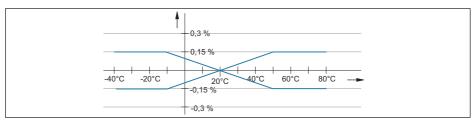


Fig. 41: Thermal change, current output

Long-term stability (according to DIN 16086)

Applies to the respective **digital** signal output (e.g. HART, Profibus PA) as well as to **analogue** current output 4 ... 20 mA under reference conditions. Specifications refer to the set span. Turn down (TD) is the ratio nominal measuring range/set span.

Long-term stability zero signal and output span

Time pe-	Meas	suring cell ø 28 mm	Measuring cell
riod	Measuring ranges from 0 0.1 bar (0 10 kPa)	Measuring range 0 +0.025 bar/0 +2.5 kPa	ø 17.5 mm
One year	< 0.05 % x TD	< 0.1 % x TD	< 0.1 % x TD
Five years	< 0.1 % x TD	< 0.2 % x TD	< 0.2 % x TD
Ten years	< 0.2 % x TD	< 0.4 % x TD	< 0.4 % x TD

Long-term stability zero signal and output span - version climate-compensated

Nominal measuring range in bar/kPa	Nominal meas- uring range in psig	Measuring cell ø 28 mm	Measuring cell ø 17.5 mm
0 0.4 bar/0 40 kPa	0 6 psig	< (1 % x TD)/year	< (1.5 % x TD)/year
0 1 bar/0 100 kPa	0 15 psig	< (0.25 % x TD)/year	< (0.375 % x TD)/year
0 2.5 bar/0 250 kPa	0 35 psig	< (0.25 % X 1D)/year	
0 5 bar/0 500 kPa	0 75 psig		
0 10 bar/0 1000 kPa	0 150 psig	< (0.1 % x TD)/year	< (0.15 % x TD)/year
0 25 bar/0 2500 kPa	0 350 psig		

Ambient conditions

Version	Ambient temperature	Storage and transport temperature
Version with connection tube	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Version with suspension cable FEP, PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Version with suspension cable PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Version	Ambient temperature	Storage and transport temperature
Version IP68 (1 bar) with connection cable PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Process conditions

Process temperature

Version	Measuring cell seal	Process temperature
Suspension cable PE	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
Suspension cable PUR	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
	EPDM (A+P 70.10-02)	
Suspension cable FEP	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Connection tube	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Sensor material PVDF	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +60 °C (+14 +140 °F)
Sensor protection PE	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
Flange GFK/seal ledge PVDF	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +80 °C (+14 +176 °F)

Process pressure

Permissible process pressure see specification "Process pressure" on the type label

Mechanical stress10)

Vibration resistance

- Suspension cable 4 g at 5 ... 200 Hz according to EN 60068-2-6 (vibration

with resonance)

- Connection tube 1 g (with lengths > 0.5 m (1.64 ft), the tube must be sup-

ported in addition)

Shock resistance 50 g, 2.3 ms according to EN 60068-2-27 (mechanical

shock) 11)

Electromechanical data - version IP66/IP67 and IP66/IP68 (0.2 bar) 12)

Options of the cable entry

- Cable entry M20 x 1.5; ½ NPT

¹⁰⁾ Depending on the instrument version

¹¹⁾ 2 g with housing version stainless steel double chamber

¹²⁾ IP66/IP68 (0.2 bar), only with absolute pressure.

- Cable gland M20 x 1.5; ½ NPT (cable ø see below table)

- Blind plug M20 x 1.5; ½ NPT

- Closing cap ½ NPT

Material cable gland/Seal insert	Cable diameter			
	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	√	√	-	√
Brass, nickel-plated/NBR	√	√	-	-
Stainless steel/NBR	-	-	√	-

Wire cross-section (spring-loaded terminals)

Massive wire, stranded wire
 Stranded wire with end sleeve
 0.2 ... 2.5 mm² (AWG 24 ... 14)
 Stranded wire with end sleeve
 0.2 ... 1.5 mm² (AWG 24 ... 16)

Electromechanical data - version IP68 (25 bar)

Connection cable transmitter - external housing, mechanical data

Configuration
 Wires, strain relief, breather capillaries, screen braiding,

metal foil, mantle 13)

Standard length
 Max. length
 Min. bending radius at 25 °C/77 °F
 St m (16.40 ft)
 180 m (590.5 ft)
 25 mm (0.985 in)

- Diameter approx. 8 mm (0.315 in)

MaterialColourBlack, blue

Connection cable transmitter - external housing, electrical data – Wire cross-section 0.5 mm 2 (AWG 20) – Wire resistance 0.037 Ω /m (0.012 Ω /ft)

Electromechanical data - version suspension cable IP68 (25 bar)

Suspension cable, mechanical data

Configuration
 Wires, strain relief, breather capillaries, screen braiding,

metal foil, mantle

Standard length
 Max. length
 Min. bending radius (at 25 °C/77 °F)
 St m (16.40 ft)
 250 m (820.2 ft)
 25 mm (0.985 in)

- Diameter approx. 8 mm (0.315 in)

- Colour, suspension cable PE Black, blue

- Colour, suspension cable PUR/FEP Blue

Suspension cable, electrical data

- Wire cross-section 0.5 mm² (AWG 20) - Wire resistance R 0.037 Ω /m (0.012 Ω /ft)

¹³⁾ Breather capillaries not with Ex d version.

Data transmission Digital (I²C-Bus)

Connection cable Four-wire

Sensor version	Configuration, connection cable		
	Cable length	Standard cable	Shielded
4 20 mA/HART	FO		
Modbus	50 m	•	_
Profibus PA, Foundation Fieldbus	25 m	-	•

Interface to the Secondary sensor

Data transmission

Configuration, connection cable

Max. cable length

Digital (l²C-Bus)

4-wire, shielded

70 m (229.7 ft)

Integrated clock

Date format Day.Month.Year
Time format 12 h/24 h

Time zone, factory setting CET

Max. rate deviation 10.5 min/year

Additional output parameter - Electronics temperature

-40 ... +85 °C (-40 ... +185 °F)

Resolution < 0.1 K

Deviation + 3 K

Availability of the temperature values

- Indication Via the display and adjustment module

16 ... 35 V DC

Output
 Via the respective output signal

Voltage supply

Operating voltage $U_{\rm B}$ 9.6 ... 35 V DC

Operating voltage U_R with lighting

switched on

Reverse voltage protection Integrated

Permissible residual ripple

- for U_N 12 V DC (9.6 V < U_B < 14 V) \leq 0.7 V_{eff} (16 ... 400 Hz) - for U_N 24 V DC (18 V < U_B < 35 V) \leq 1.0 V_{eff} (16 ... 400 Hz)

Load resistor

- Calculation $(U_{R} - U_{min})/0.022 A$

– Example - with U_B = 24 V DC (24 V - 9.6 V)/0.022 A = 655 Ω

Voltage supply - sensor with integrated PLICSMOBILE 81

Operating voltage 14) 9.6 ... 32 V DC

Power consumption 15)

Power saving mode (9 V/12 V)
 Power saving mode (24 V/32 V)
 1.8 mW/3.7 mW

Permanent operation
Peak power (measured value transmission)
1.1 W
mission)

Power requirement 16)

- Measurement cycle incl. transmission 15 mWh

Sensor power supply

Off-load voltageMax. current80 mA

Potential connections and electrical separating measures in the instrument

Electronics Non-floating

Galvanic separation

between electronics and metallic parts Reference voltage 500 V AC of the device

Conductive connection Between ground terminal and metallic process fitting

Electrical protective measures 17)

Housing material	Version	Protection acc. to IEC 60529	Protection acc. to NEMA
Plastic	Single chamber	IP66/IP67	Tune 4V
	Double chamber	IP00/IP07	Type 4X
Aluminium	Single chamber	IP66/IP67	Type 4X
		IP66/IP68 (0.2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Double chamber	IP66/IP67	Type 4X
		IP66/IP68 (0.2 bar)	Type 6P
Stainless steel (electro-polished)	Single chamber	IP66/IP67	Type 4X
		IP69K	

¹⁴⁾ When the instrument is powered by an external voltage supply, make sure the voltage supply unit has a sufficient current carrying capacity. With a voltage supply < 9.6 V, current peaks of up to 2 A must be expected.</p>

¹⁵⁾ The listed power specifications include the voltage supply of a HART sensor with 20 mA.

¹⁶⁾ The listed energy requirement includes the voltage supply of a HART sensor with 4 mA (multidrop mode) and 12 V operating voltage.

¹⁷⁾ Protection rating IP66/IP68 (0.2 bar) only in conjunction with absolute pressure, as no air compensation is possible when the sensor is completely flooded

Housing material	Version	Protection acc. to IEC 60529	Protection acc. to NEMA
Stainless steel (precision cast-	Single chamber	IP66/IP67	Type 4X
ing)		IP66/IP68 (0.2 bar)	Type 6P
		IP66/IP68 (1 bar)	Type 6P
	Double chamber	IP66/IP67	Type 4X
		IP66/IP68 (0.2 bar)	Type 6P
Stainless steel	Transmitter, version with external housing	IP68 (25 bar)	-

Connection of the feeding power supply Networks of overvoltage category III unit

Altitude above sea level

- by default up to 2000 m (6562 ft) - with connected overvoltage protection up to 5000 m (16404 ft)

Pollution degree 18) Protection rating (IEC/EN 61010-1) Ш

11.2 Calculation of the total deviation

The total deviation of a pressure transmitter indicates the maximum measurement error to be expected in practice. It is also called maximum practical deviation or operational error.

According to DIN 16086, the total deviation F_{total} is the sum of the basic deviation F_{net} and the longterm stability F_{stab}:

$$F_{total} = F_{perf} + F_{stab}$$

The basic deviation \mathbf{F}_{perf} in turn consists of the thermal change of the zero signal and the output span F_T (temperature error) as well as the deviation F_K:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

The thermal change of zero signal and output span F, is specified in chapter " Technical data". The basic temperature error F_{τ} is shown in a graphic. Depending on the measuring cell version and Turn down, this value must be multiplied with the additional factors FMZ and FTD:

Also these values are specified in chapter " Technical data".

This applies initially to the digital signal output through HART, Profibus PA, Foundation Fieldbus or Modbus.

With 4 ... 20 mA output, the thermal change of the current output F_a must be added:

$$F_{perf} = \sqrt{((F_{T})^{2} + (F_{KI})^{2} + (F_{a})^{2})}$$

To provide a better overview, the formula symbols are listed together below:

- F_{total}: Total deviation

- F_{perf}^{total} : Basic deviation F_{stab}^{total} : Long-term stability F_{T}^{total} : Thermal change of zero signal and output span (temperature error)
- F_{k1}: Deviation
- F: Thermal change of the current output
- FMZ: Additional factor measuring cell version

¹⁸⁾ When used with fulfilled housing protection.

FTD: Additional factor Turn down

11.3 Practical example

Data

Level measurement in a water reservoir, 1,600 mm height corresponds to 0.157 bar (157 kPa), medium temperature 50 $^{\circ}$ C

VEGABAR 86 with measuring range 0.4 bar, deviation < 0.1 %, meas. cell ø 28 mm

1. Calculation of the Turn down

TD = 0.4 bar/0.157 bar, TD = 2.6:1

2. Determination temperature error F₊

The necessary values are taken from the technical data:

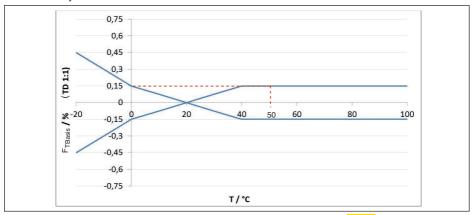


Fig. 42: Determination of the basic temperature error for the above example: $F_{TBasis} = \frac{0.15 \%}{100}$

Measuring cell ver-	Measuring cell - Standard	Measuring cell climate-compensated, depending on measuring range		
Sion	0.1 %	10 bar, 25 bar	1 bar, 2.5 bar	0.4 bar
Factor FMZ	1	1	2	3

Tab. 26: Determination of the additional factor measuring cell for above example: $F_{MZ} = \frac{1}{2}$

Turn Down	TD 1:1	TD 2.5 : 1	TD 5 : 1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Tab. 27: Determination of the additional factor "turn down" for the above example: $F_{TD} = \frac{1.75}{1.00}$

$$F_T = F_{TBasis} \times F_{MZ} \times F_{TD}$$

$$F_{\tau} = 0.15 \% \times 1 \times 1.75$$

$$F_{+} = 0.26 \%$$

3. Determination of deviation and long-term stability

The required values for deviation F_{KI} and long-term stability F_{stab} are available in the technical data:

Accuracy class	Non-linearity, hysteresis and non-repeatability		
	TD ≤ 5:1	TD > 5:1	
0.1 %	< 0.1 %	< 0.02 % x TD	

Tab. 28: Determination of the deviation from table: $F_{\kappa l} = 0.1 \%$

VEGABAR 86

		suring cell ø 28 mm	Measuring cell
riod	All measuring ranges	Measuring range 0 +0.025 bar/0 +2.5 kPa	ø 17.5 mm
One year	< 0.05 % x TD	< 0.1 % x TD	< 0.1 % x TD
Five years	< 0.1 % x TD	< 0.2 % x TD	< 0.2 % x TD
Ten years	< 0.2 % x TD	< 0.4 % x TD	< 0.4 % x TD

VEGABAR 87

Time period		Measuring range 0 +0.025 bar/0 +2.5 kPa
One year	< 0.05 % x TD	< 0.1 % x TD
Five years	< 0.1 % x TD	< 0.2 % x TD
Ten years	< 0.2 % x TD	< 0.4 % x TD

Tab. 29: Determination of the long-term stability from the table, consideration for one year: $F_{\text{stab}} = 0.05 \% \times \text{TD} = 0.05 \% \times 2.6 = \frac{0.13 \%}{2.000 \times 10^{-100}}$

4. Calculation of the total deviation - HART signal

- 1. step: Basic accuracy F_{perf}

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

$$F_{\tau} = 0.26 \%$$

$$F_{KI} = 0.1 \%$$

$$F_{perf} = \sqrt{(0.26 \%)^2 + (0.1 \%)^2}$$

$$F_{perf} = 0.28 \%$$

- 2. step: Total deviation F

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{stab} = (0.05 \% x TD)$$

$$F_{stab} = (0.05 \% x 2.5)$$

$$F_{\text{stab}} = 0.13 \%$$

$$F_{total} = 0.28 \% + 0.13 \% = 0.41 \%$$

5. Calculation of the total deviation - 4 ... 20 mA signal

- 1. step: Basic accuracy F_{perf}

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

$$F_{\tau} = 0.26 \%$$

$$F_{KI} = 0.2 \%$$

$$F_a = 0.15 \%$$

$$F_{perf} = \sqrt{(0.26 \%)^2)^2 + (0.1 \%)^2 + (0.15 \%)^2}$$

$$F_{perf} = 0.32 \%$$

- 2. step: Total deviation F_{total}

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{stab} = (0.05 \% x TD)$$

$$F_{stab} = (0.05 \% x 2.5)$$

$$F_{stab} = 0.13 \%$$

$$F_{total} = 0.32 \% + 0.13 \% = 0.45 \%$$

The total deviation of the measuring system is hence 0.45 %.

Deviation in mm: 0.45 % of 1600 mm = 7 mm

The example shows that the measurement error in practice can be considerably higher than the basic accuracy. Reasons are temperature influence and Turn down.

The thermal change of the current output is in this example is negligible.

11.4 Dimensions

The following dimensional drawings represent only an extract of the possible versions. Detailed dimensional drawings can be downloaded at www.vega.com under " Downloads" and " Drawings".

Plastic housing

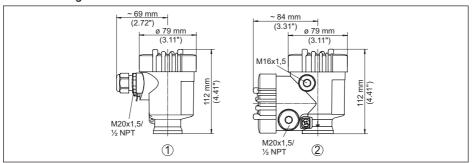


Fig. 43: Housing versions in protection IP66/IP67 (with integrated display and adjustment module the housing is 9 mm/0.35 in higher)

- 1 Plastic single chamber
- 2 Plastic double chamber

Aluminium housing

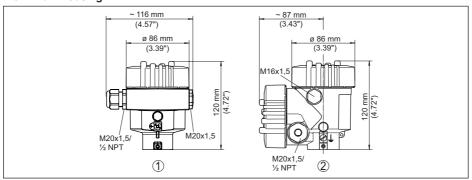


Fig. 44: Housing versions in protection IP66/IP67 (with integrated display and adjustment module the housing is 18 mm/0.71 in)

Aluminium - single chamber
 Aluminium - double chamber

Aluminium housing with protection rating IP66/IP68 (1 bar)

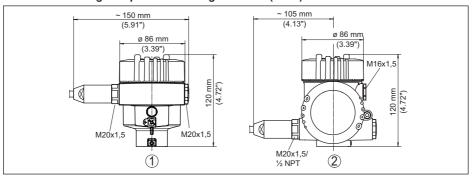


Fig. 45: Housing version with protection rating IP66/IP68 (1 bar), (with integrated display and adjustment module the housing is 18 mm/0.71 in higher)

- 1 Aluminium single chamber
- 2 Aluminium double chamber

Stainless steel housing

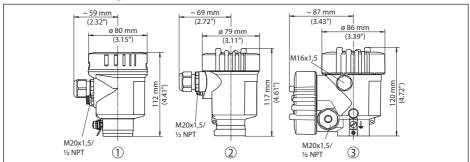


Fig. 46: Housing versions in protection IP66/IP67 (with integrated display and adjustment module the housing is 9 mm/0.35 in higher)

- 1 Stainless steel single chamber (electropolished)
- 2 Stainless steel single chamber (precision casting)
- 3 Stainless steel double chamber (precision casting)

Stainless steel housing with protection rating IP66/IP68 (1 bar)

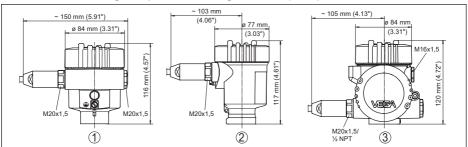


Fig. 47: Housing versions in protection rating IP66/IP68 (1 bar), (with integrated display and adjustment module the housing is 9 mm/0.35 in or 18 mm/0.71 in higher)

- 1 Stainless steel single chamber (electropolished)
- 2 Stainless steel single chamber (precision casting)
- 3 Stainless steel double chamber (precision casting)

Stainless steel housing with protection rating IP69K

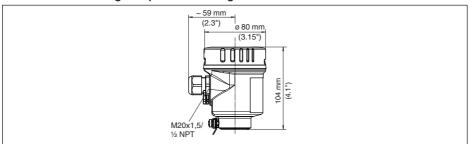


Fig. 48: Housing version with protection rating IP69K (with integrated display and adjustment module the housing is 9 mm/0.35 in higher)

1 Stainless steel single chamber (electropolished)

External housing on IP68 version

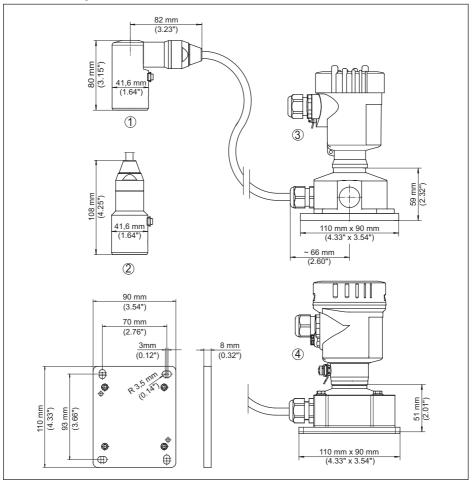


Fig. 49: VEGABAR 86, IP68 version with external housing

- 1 Lateral cable outlet
- 2 Axial cable outlet
- 3 Plastic single chamber
- 4 Stainless steel single chamber
- 5 Seal 2 mm (0.079 in), (only with 3A approval)

VEGABAR 86, sensor (32 mm)

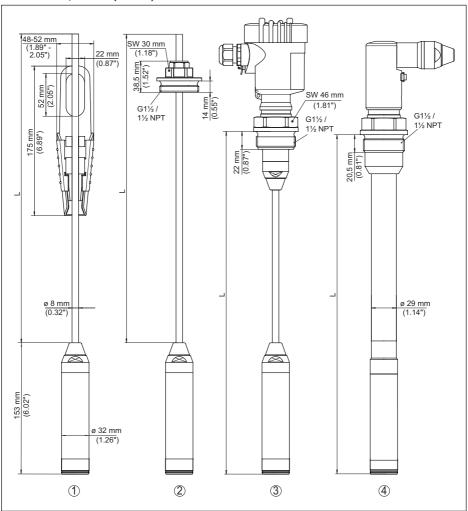


Fig. 50: VEGABAR 86, sensor (32 mm)

- 1 Straining clamp
- 2 Adjustable suspension cable gland G11/2, 11/2 NPT
- 3 Thread G11/2, 11/2 NPT
- 4 Cable outlet with thread G11/2, 11/2 NPT
- L Total length from configurator

VEGABAR 86, sensor (22 mm)

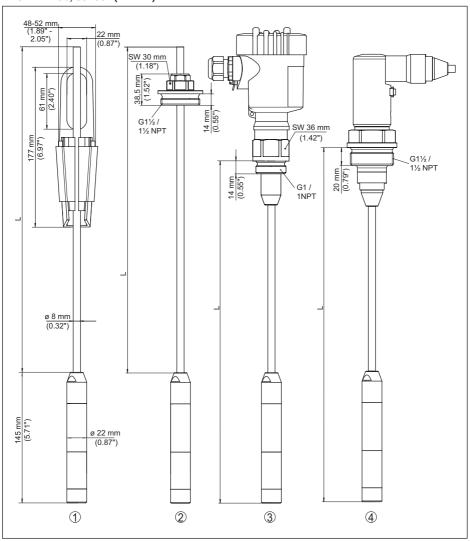


Fig. 51: VEGABAR 86, sensor (22 mm)

- 1 Straining clamp
- 2 Adjustable suspension cable gland G1½, 1½ NPT
- 3 Thread G1, 1 NPT
- 4 Cable outlet with thread G11/2, 11/2 NPT
- L Total length from configurator

VEGABAR 86, plastic version

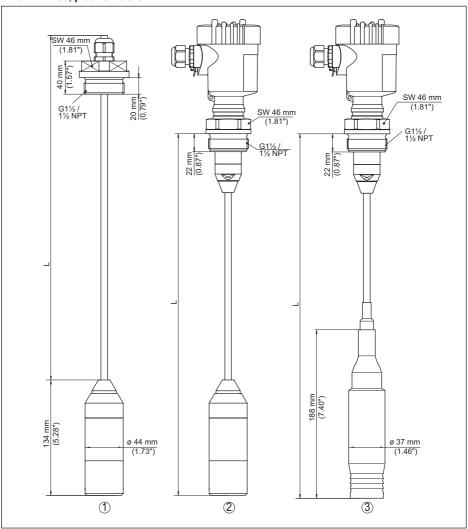


Fig. 52: VEGABAR 86, plastic version

- 1 PVDF, with threaded fitting G1½, 1½ NPT
- 2 PVDF, with thread G1½, 1½ NPT
- 3 PE coated, with thread G11/2, 11/2 NPT
- L Total length from configurator

VEGABAR 86, flange connection

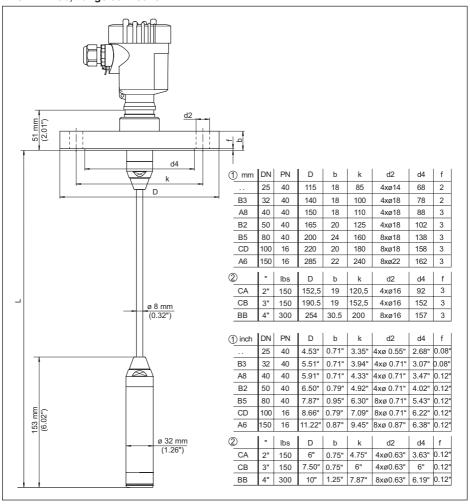


Fig. 53: VEGABAR 86, flange connection (example: sensor 32 mm)

- 1 Flanges according to DIN 2501
- 2 Flanges according to ASME B16.5
- L Total length from configurator

VEGABAR 86, hygienic fitting

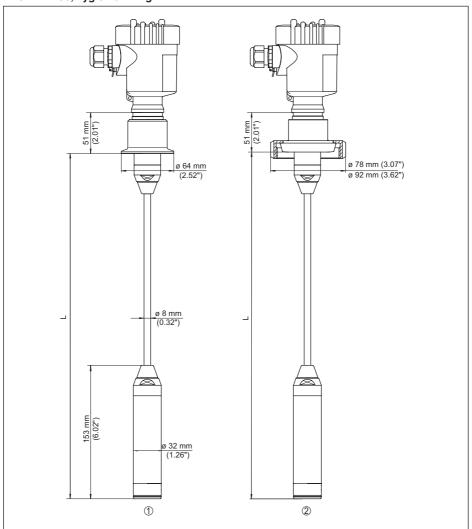


Fig. 54: VEGABAR 86, hygienic fittings

- Clamp 2" PN 16 (ø 64 mm), (DIN 32676, ISO 2852) Slotted nut DN 50
- 2
- Total length from configurator

VEGABAR 86, threaded version

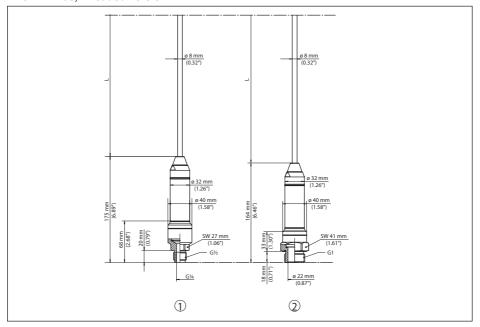


Fig. 55: VEGABAR 86, threaded version

- 1 Thread G½, internal G¼
- 2 Thread ½ NPT, hole ø 11 mm
- 3 Thread G1
- L Total length from configurator

11.5 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。

11.6 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

INDEX

Additional current output 37 Adjust Date/Time 40 Adjustment 33, 36 -Overview 35 - Unit 34

C

Change the language 38 Copy sensor settings 41 Current output 37, 42

D

Damping 36 Default values 43 Differential pressure measurement 8 Display lighting 39 Documentation 7

F

EDD (Enhanced Device Description) 48 Electrical connection 18, 19 Error codes 51, 52

F

Fault rectification 53

G

Grounding 18

н

HART 42

Level measurement 17 Linearisation 37

M

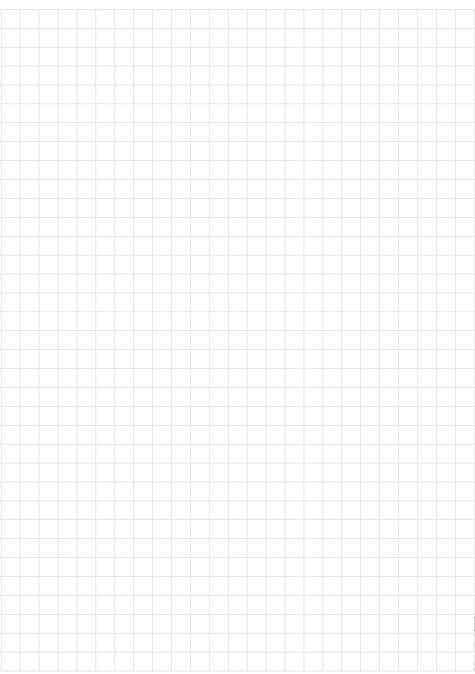
Maintenance 49 Measured value memory 49 Measurement setup - In the open vessel 17

Ν

NAMUR NE 107 50

Peak indicator 39 Position correction 34 Pressure compensation 15, 16, 17 -Ex d 15

QR code 7


Repair 55 Reset 40

S

Seal concept 9 Serial number 7 Service access 41 Service hotline 53 Set display parameters 38, 39 Simulation 40

Type label 7

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2023

45039-EN-230914