Instrucciones de servicio

Sonda de medición capacitiva de cable para la detección de nivel

VEGACAP 65

Transistor (NPN/PNP)

Document ID: 30018

Índice

1	Acerca de este documento			
	1.1 Función			
	1.2 Grupo destinatario	4		
	1.3 Simbología empleada	4		
2	Para su seguridad	5		
	2.1 Personal autorizado	5		
	2.2 Uso previsto			
	2.3 Aviso contra uso incorrecto			
	2.4 Instrucciones generales de seguridad			
	2.5 Conformidad			
	2.6 Instrucciones de seguridad para zonas Ex			
	2.7 Instrucciones acerca del medio ambiente			
3	Descripción del producto			
	3.1 Estructura			
	3.2 Principio de operación			
	3.3 Ajuste	10		
	3.4 Embalaje, transporte y almacenaje			
4	Montaje 1			
	4.1 Instrucciones generales			
	4.2 Instrucciones de montaje			
5	Conectar a la alimentación de tensión			
	5.1 Preparación de la conexión			
	5.2 Pasos de conexión			
	5.3 Esquema de conexión - Carcasa de una cámara			
	5.4 Esquema de conexión - versión IP66/IP68, 1 bar			
6	Puesta en marcha			
	6.1 Informaciones generales			
	6.2 Elementos de configuración			
	6.3 Tabla de funciones			
7	Diagnóstico y Servicio	27		
	7.1 Mantenimiento	27		
	7.2 Eliminar fallos			
	7.3 Cambio del módulo electrónico	29		
	7.4 Reducción de la sonda de medición			
	7.5 Procedimiento en caso de reparación			
8	Desmontaje			
	8.1 Pasos de desmontaje			
	8.2 Eliminar	34		
9	Anexo	35		
	9.1 Datos técnicos			
	9.2 Dimensiones			
	9.3 Derechos de protección industrial	45		
	9.4 Marca registrada	45		

1 Acerca de este documento

1.1 Función

Estas instrucciones ofrecen la información necesaria para el montaje, la conexión y la puesta en marcha, así como importantes indicaciones para el mantenimiento, la eliminación de fallos, el recambio de piezas y la seguridad del usuario. Por ello es necesario proceder a su lectura antes de la puesta en marcha y guardarlo todo el tiempo al alcance de la mano en las cercanías del equipo como parte integrante del producto.

1.2 Grupo destinatario

Este manual de instrucciones está dirigido al personal cualificado. El contenido de esta instrucción debe ser accesible para el personal cualificado y tiene que ser aplicado.

1.3 Simbología empleada

ID de documento

Este símbolo en la portada de estas instrucciones indica la ID (identificación) del documento. Entrando la ID de documento en www.vega.com se accede al área de descarga de documentos.

Información, indicación, consejo: Este símbolo hace referencia a información adicional útil y consejos para un trabajo exitoso.

Nota: Este símbolo hace referencia a información para prevenir fallos, averías, daños en equipos o sistemas.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar daños personales.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Peligro: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Aplicaciones Ex

Este símbolo caracteriza instrucciones especiales para aplicaciones $\operatorname{\mathsf{Fx}}$

Lista

El punto precedente caracteriza una lista sin secuencia obligatoria

1 Secuencia de procedimiento

Los números precedentes caracterizan pasos de operación secuenciales.

Eliminación

Este símbolo caracteriza instrucciones especiales para la eliminación.

2 Para su seguridad

2.1 Personal autorizado

Todas las operaciones descritas en esta documentación tienen que ser realizadas exclusivamente por personal cualificado y autorizado por el titular de la instalación.

Durante los trabajos en y con el dispositivo siempre es necesario el uso del equipo de protección necesario.

2.2 Uso previsto

VEGACAP 65 es un sensor para la detección de nivel.

Informaciones detalladas sobre el campo de aplicación se encuentran en el capítulo " *Descripción del producto*".

La seguridad del funcionamiento del instrumento está dada solo en caso de un uso previsto según las especificaciones del manual de instrucciones, así como según como las instrucciones complementarias que pudiera haber.

Por motivos de seguridad y de garantía, las manipulaciones en el equipo que excedan las operaciones descritas en el manual de instrucciones deben ser realizadas exclusivamente por el personal autorizado del fabricante. Quedan estrictamente prohibidas las remodelaciones o las modificaciones realizadas por cuenta propia.

2.3 Aviso contra uso incorrecto

En caso de un uso inadecuado o no previsto de este equipo, es posible que del mismo se deriven riegos específicos de cada aplicación, por ejemplo un rebose del depósito debido a un mal montaje o mala configuración. Esto puede tener como consecuencia daños materiales, personales o medioambientales. También pueden resultar afectadas las propiedades de protección del equipo.

2.4 Instrucciones generales de seguridad

El equipo se corresponde con el nivel del desarrollo técnico bajo consideración de las prescripciones y directivas corrientes. Sólo se permite la operación del mismo en un estado técnico impecable y seguro. El titular es responsable de una operación sin fallos del equipo. En caso de un empleo en medios agresivos o corrosivos en los que un mal funcionamiento del equipo puede dar lugar a posibles riesgos, el titular tiene que garantizar un correcto funcionamiento del equipo tomando las medidas para ello oportunas.

El usuario tiene que respetar las instrucciones de seguridad de este manual de instrucciones, las normas de instalación específicas del país y las normas validas de seguridad y de prevención de accidentes.

Por razones de seguridad y de garantía, toda manipulación que vaya más allá de lo descrito en el manual de instrucciones tiene que ser llevada a cabo por parte de personal autorizado por el fabricante. Están prohibidas explícitamente las remodelaciones o los cambios

realizados por cuenta propia. Por razones de seguridad sólo se permite el empleo de los accesorios mencionados por el fabricante.

Para evitar posibles riesgos, hay que atender a los símbolos e indicaciones de seguridad puestos en el equipo.

2.5 Conformidad

El equipo cumple los requisitos legales de las directivas o reglamentos técnicos específicos de cada país. Certificamos la conformidad con la marca correspondiente.

Las declaraciones de conformidad correspondientes están en nuestra página web.

2.6 Instrucciones de seguridad para zonas Ex

En aplicaciones en zonas con riesgo de explosión (Ex) solo se permite el empleo de equipos con la correspondiente homologación Ex. Observe al respecto las indicaciones de seguridad específicas Ex. Ellas son parte integrante del manual de instrucciones y se adjuntan con cada equipo con homologación Ex.

2.7 Instrucciones acerca del medio ambiente

La protección de la base natural de vida es una de las tareas más urgentes. Por eso hemos introducido un sistema de gestión del medio ambiente, con el objetivo de mejorar continuamente el medio ambiente empresarial. El sistema de gestión del medio ambiente está certificado por la norma DIN EN ISO 14001.

Ayúdenos a satisfacer esos requisitos, prestando atención a las instrucciones del medio ambiente en este manual:

- Capitulo " Embalaje, transporte y almacenaje"
- Capitulo " Reciclaje"

3 Descripción del producto

3.1 Estructura

Material suministrado

El material suministrado incluye:

Interruptor de nivel VEGACAP 65

El resto del material suministrado comprende:

- Documentación
 - Instrucciones de servicio VEGACAP 65
 - Safety Manual (SIL)
 - Instrucciones para equipamientos opcionales
 - "Instrucciones de seguridad" especificas EX (para versiones Ex)
 - Otras certificaciones en caso necesario

Información:

Ĭ

En el manual de instrucciones también se describen las características técnicas, opcionales del equipo. El volumen de suministro correspondiente depende de la especificación del pedido.

Ámbito de vigencia de este manual de instrucciones

El manual de instrucciones siguiente es válido para las versiones de equipos siguientes:

- Hardware a partir de la versión 1.0.0
- Software desde 1.3.0
- Solo para versiones de equipo sin cualificación SIL

Componentes

Componentes de VEGACAP 65:

- Conexión a proceso con sonda de medición
- Carcasa con electrónica
- Tapa de la carcasa

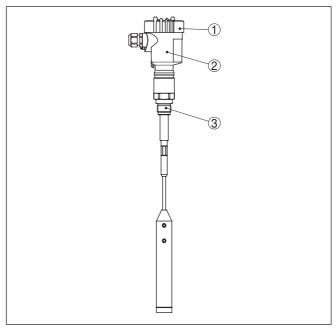


Fig. 1: VEGACAP 65, versión de cable con carcasa de plástico

- 1 Tapa de la carcasa
- 2 Carcasa con electrónica
- 3 Conexión a proceso

Placa de tipos

La placa de características contiene los datos más importantes para la identificación y empleo del instrumento.

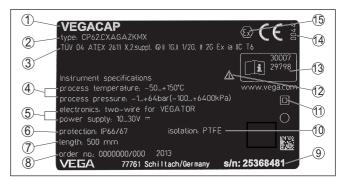


Fig. 2: Estructura de la placa de tipos (ejemplo)

- Tipo de instrumento
- 2 Código del producto
- 3 Homologaciones
- 4 Temperatura de proceso y ambiente, presión de proceso
- 5 Alimentación y salida de señal de la electrónica
- 6 Tipo de protección
- 7 Longitud de la sonda de medición
- 8 Número de pedido
- 9 Número de serie de los equipos
- 10 Material piezas en contacto con el producto
- 11 Símbolo para grado de protección de instrumento
- 12 Nota de atención sobre la documentación del instrumento
- 13 Números de identificación documentación del instrumento
- 14 Organismo notificado para la certificación de conformidad CE
- 15 Normas de homologación

El número de serie permite visualizar los datos de entrega del equipo a través de "www.vega.com", "Buscar". Además de en la placa de características en el exterior del equipo, encontrará el número de serie también en el interior del equipo.

Número de serie - Búsqueda de instrumento

Los números de serie se encuentran en la placa de tipos del instrumento. De esta forma encontrará en nuestro sitio web los datos siguientes del instrumento:

- Código del producto (HTML)
- Fecha de suministro (HTML)
- Características del instrumento específicas del pedido (HTML)
- Manual de instrucciones y guía rápida al momento del suministro (PDF)
- Certificado de control (PDF) opcional

Vaya a " <a href="www.vega.com" e introduzca el número de serie de su dispositivo en el campo de búsqueda.

Opcionalmente Usted encontrará los datos mediante su Smartphone:

- Descargar la aplicación VEGA Tools de " Apple App Store" o de " Google Play Store"
- Escanear el código QR de la placa de tipos del instrumento o
- Entrar el número de serie manualmente en el App

Rango de aplicación

3.2 Principio de operación

El VEGACAP 65 es un interruptor de nivel para el empleo en todos los sectores industriales.

La senda de medición parcialmente aislada es apropiada para la medición de sólidos a granel y de líquidos. La acreditada estructura mecánica ofrece una alta seguridad de funcionamiento.

Principio de funcionamiento

El electrodo de medición, el producto y la pared del depósito forman un condensador eléctrico. La capacidad del condensador es influenciada principalmente por tres factores:

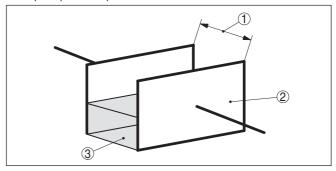


Fig. 3: Principio de funcionamiento - Condensador de placas

- 1 Distancia de las superficies de los electrodos
- 2 Tamaño de las superficie de los electrodos
- 3 Tipo de dieléctrico entre los electrodos

Aquí los electrodos y la pared del depósito son las placas del condensador. El producto es el dieléctrico. La capacidad del condensador aumenta a medida que crece el recubrimiento de los electrodos a causa de la elevada constante dieléctrica del producto en comparación con el aire.

La variación de capacidad es convertida en una instrucción de conexión por el módulo electrónico.

Alimentación de tensión

VEGACAP 65 es un equipo compacto, lo que significa, que puede trabajar sin evaluación externa. El sistema electrónico integrado evalúa la señal de nivel y entrega una señal de conexión. Con esa señal de salida puede activarse directamente un aparato conectado a continuación (p. ej. un dispositivo de alarma, una bomba, etc.).

Los datos para la alimentación de tensión se indican en el capítulo "

3.3 Ajuste

La sonda de medición puede adaptarse al valor de constante dieléctrica del producto en el módulo electrónico.

Una instrucción de conexión se puede emitir tanto con los electrodos cubiertos como cuando están descubiertos.

En el módulo electrónico se encuentran los elementos de indicación y configuración siguientes:

- Lámpara de control para la indicación del estado de conexión (verde/roja)
- Potenciómetro para la adaptación del punto de conmutación
- Interruptor DIL para la selección del rango de medición
- Interruptor DIL para la conmutación de modos de operación

3.4 Embalaje, transporte v almacenaje

Embalaje

Su equipo está protegido por un embalaje durante el transporte hasta el lugar de empleo. Aquí las solicitaciones normales a causa del transporte están aseguradas mediante un control basándose en la norma DIN EN 24180.

En caso de equipos estándar el embalaje es de cartón, compatible con el medio ambiente y reciclable. En el caso de versiones especiales se emplea adicionalmente espuma o película de PE. Deseche los desperdicios de material de embalaje a través de empresas especializadas en reciclaje.

Transporte

Hay que realizar el transporte, considerando las instrucciones en el embalaje de transporte. La falta de atención puede tener como consecuencia daños en el equipo.

Inspección de transporte

Durante la recepción hay que comprobar inmediatamente la integridad del alcance de suministros y daños de transporte eventuales. Hay que tratar correspondientemente los daños de transporte o los vicios ocultos determinados.

Almacenaje

Hay que mantener los paquetes cerrados hasta el montaje, y almacenados de acuerdo de las marcas de colocación y almacenaje puestas en el exterior.

Almacenar los paquetes solamente bajo esas condiciones, siempre y cuando no se indique otra cosa:

- No mantener a la intemperie
- Almacenar seco y libre de polvo
- No exponer a ningún medio agresivo
- Proteger de los rayos solares
- Evitar vibraciones mecánicas

Temperatura de almacenaje y transporte

- Temperatura de almacenaje y transporte ver " Anexo Datos técnicos - Condiciones ambientales"
- Humedad relativa del aire 20 ... 85 %

Levantar y transportar

Para elevar y transportar equipos con un peso de más de 18 kg (39.68 lbs) hay que servirse de dispositivos apropiados y homologados.

3.5 Accesorios

Las instrucciones para los accesorios mencionados se encuentran en el área de descargas de nuestra página web.

Cubierta protectora La tapa protectora protege la carcasa del sensor contra suciedad y

fuerte calentamiento por radiación solar.

Bridas Las bridas roscadas están disponibles en diferentes versiones según

las normas siguientes: DIN 2501, EN 1092-1, BS 10, ASME B 16.5,

JIS B 2210-1984, GOST 12821-80.

4 Montaje

4.1 Instrucciones generales

Condiciones de proceso

Indicaciones:

El dispositivo debe ser operado por razones de seguridad sólo dentro de las condiciones de proceso permisibles. Las especificaciones respectivas se encuentran en el capítulo " *Datos técnicos*" del manual de instrucciones o en la placa de tipos.

Asegurar antes del montaje, que todas las partes del equipo que se encuentran en el proceso, sean adecuadas para las condiciones de proceso existentes.

Estos son principalmente:

- Pieza de medición activa
- Conexión a proceso
- Junta del proceso

Condiciones de proceso son especialmente

- Presión de proceso
- Temperatura de proceso
- Propiedades químicas de los productos
- Abrasión e influencias mecánicas

Punto de conmutación

Básicamente el sensor VEGACAP 65 hay que montar en posición vertical. Hay que montar el aparato sólo de forma tal que el electrodo se encuentre a la altura del punto de conexión deseado.

Trabajos de soldadura

Antes de los trabajos de soldadura en el depósito sacar el módulo electrónico del sensor. De esta forma se evitan daños en el módulo electrónico a causa de modulaciones inductivas.

Antes de soldar, ponga a tierra la sonda de medición directamente en la varilla o en el cable.

Atornillar

Los aparatos con conexión roscada se enroscan a la conexión a proceso con una llave adecuada por medio del hexágono.

Ancho de llave véase capítulo "Dimensiones".

Advertencia:

¡La carcasa o la conexión eléctrica no se deben utilizar para atornillar! El apriete puede causar daños, por ejemplo, en dependencia de la versión del aparato en el mecanismo de giro de la carcasa.

Manipulación

!En las versiones roscadas la carcasa no puede emplearse para atornillar! El apriete puede causar daños en el sistema mecánico de rotación de la carcasa.

Para atornillar, emplear el hexágono previsto.

Humedad

Emplee el cable recomendado (ver capitulo " Conexión a la alimentación de tensión") y apriete el prensaestopas.

Puede proteger adicionalmente su equipo contra la entrada de humedad llevando el cable de conexión hacia abajo antes del prensaestopas. De esta forma puede gotear el agua de lluvia y de condensado. Esto se aplica especialmente en caso de un montaje a la intemperie, en lugares donde hay que contar con la presencia de humedad (p. ej., por procesos de limpieza) o en depósitos refrigerados o caldeados.

Asegúrese que la tapa de la carcasa esté cerrada y asegurada en caso necesario durante el funcionamiento para mantener el tipo de protección del equipo.

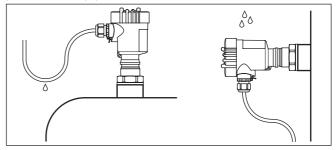


Fig. 4: Medidas contra la entrada de humedad

Presión/Vacío

En el caso de presión excesiva o vacío en el depósito hay que sellar la conexión al proceso. Antes del empleo, comprobar si el material de sellado posee la resistencia necesaria respecto al producto y la temperatura de proceso.

La presión máxima permisible se puede tomar del capítulo " *Datos técnicos*" o en la placa de tipos del sensor.

Material del depósito

Deposito metálico

Prestar atención a que la conexión mecánica de la sonda de medición con el depósito se encuentre conectada con conductividad eléctrica, para asegurar suficiente acometida a tierra.

Emplee juntas conductoras tales como por ejemplo cobre y plomo, etc. Medidas de aislamiento tales como la envoltura de la rosca con cinta de teflón pueden interrumpir la conexión eléctrica necesaria en el caso de depósitos metálicos. Por ello, ponga a tierra la sonda de medición en el depósito o emplee material de sellado conductor.

Depósito no conductor

En caso de depósitos no conductores, p. ej., tanques plásticos, hay que disponer por separado el segundo polo del condensador.

Formación de condensado

Si se forma condensado en la tapa del depósito, el líquido que fluye puede conducir a la formación de puente y de esta forma a errores de medición.

Por eso emplear un tubo de apantallamiento o un aislamiento más largo. La longitud se ajusta según la cantidad de condensado y el comportamiento de salida del producto.

Entradas de cable - rosca Rosca métrica NPT Prensaestopas

En carcasas del equipo con roscas métricas, los prensaestopas vienen ya enroscados de fábrica. Están cerrados con tapones de plástico para la protección durante el transporte.

Hay que retirar esos tapones antes de realizar la conexión eléctrica.

Rosca NPT

En caso de carcasas con roscas autoselladoras de NPT, los prensaestopas no pueden enroscarse en fábrica. Por ello, las aperturas libres de las entradas de cables están cerradas con tapas protectoras contra el polvo de color rojo como protección para el transporte.

Es necesario sustituir esas tapas de protección por prensaestopas homologados o por tapones ciegos adecuados antes de la puesta en marcha.

4.2 Instrucciones de montaje

Agitadores y fluidización

Agitadores, vibraciones del lado de la instalación o similares, pueden provocar que el interruptor limite sea sometido a fuerzas laterales intensas. Por esa razón, no seleccionar los electrodos del VEGACAP 65 demasiado largo, en lugar de ello comprobar la posibilidad de montaje de un interruptor limitador corto lateralmente en posición horizontal.

Afluencia de producto

Cuando el equipo está montado en la corriente de llenado, pueden producirse conexiones erróneas indeseadas. Por eso, montar el equipo en un punto del depósito donde no se puedan producir influencias perturbadoras tales como p. Ej., aberturas de carga, agitadores, etc.

Esto resulta especialmente válido para modelos de equipo con electrodos largos

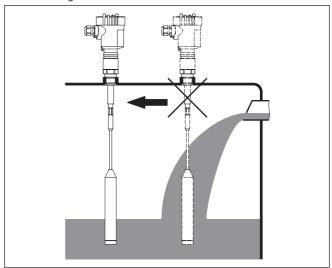


Fig. 5: Afluencia de producto

Tubuladura

El electrodo debe sobresalir lo más libre posible del deposito para evitar incrustaciones. Por eso evitar las tubuladuras para bridas y tubuladuras roscadas. Ello resulta especialmente valido para productos con tendencia a adherencias.

Cono de apilado

En los silos de sólidos a granel pueden formarse conos de apilado que alteran el punto de conmutación. Tenga en cuenta este aspecto a la hora de disponer el sensor dentro del depósito. Recomendamos un lugar de montaje en el que la sonda de medición detecte un valor promedio del cono de apilado.

La sonda de medición tiene que ser montada en función de la posición del orificio de llenado y vaciado en el depósito.

En el caso de depósitos cilíndricos para compensar el error de medición, resultante a causa del cono de apilado, hay que montar el sensor a una distancia d/6 de la pared del depósito.

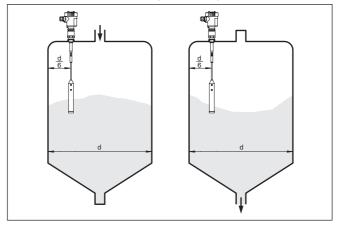


Fig. 6: Llenado y vaciado central

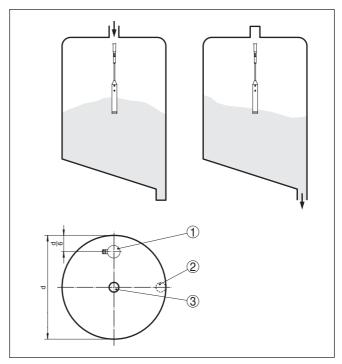


Fig. 7: Llenado central, vaciado lateral

- 1 VEGACAP 65
- 2 Orificio de vaciado
- 3 Orificio de llenado

Carga de tracción

Prestar atención que no se sobrepase la carga máxima de tracción del cable portador Ese riesgo existe principalmente en caso de sólidos especialmente pesados y grandes longitudes de medición. La carga máxima de tracción se encuentra en los " *Datos técnicos*".

5 Conectar a la alimentación de tensión

5.1 Preparación de la conexión

Instrucciones de seguridad

Prestar atención fundamentalmente a las instrucciones de seguridad siguientes:

 La conexión eléctrica tiene que ser realizada exclusivamente por personal cualificado y que hayan sido autorizados por el titular de la instalación

Advertencia:

Conectar o desconectar sólo en estado libre de tensión.

Alimentación de tensión

Conecte la tensión de alimentación de acuerdo a los siguientes esquemas de conexiones. Prestar atención a las prescripciones generales de instalación durante dicha operación. Conectar el VE-GACAP 65 fundamentalmente con la tierra del deposito (PA) o con el potencial a tierra más próximo en caso de depósitos plásticos. Dicha conexión sirve para la derivación de cargas electrostáticas. En caso de aplicaciones Ex hay que tener en cuenta las especificaciones de montaje de orden superior para áreas bajo peligro de explosión.

Los datos para la alimentación de tensión se indican en el capítulo "
Datos técnicos".

Cable de conexión

El equipo se conecta con cable comercial de tres hilos sin blindaje. En caso de esperarse interferencias electromagnéticas, superiores a los valores de comprobación de la norma EN 61326 para zonas industriales, hay que emplear cable blindado.

Asegúrese de que el cable utilizado tiene la resistencia a la temperatura y la seguridad contra incendios requerida para la temperatura ambiente máxima producida.

Emplear cable con sección redonda en los equipos con carcasa y prensaestopas. Controlar para qué diámetro exterior del cable es adecuado el prensaestopas con objeto de garantizar la estanqueidad del prensaestopas (tipo de protección IP).

Emplear un diámetro de cable adecuado para el prensaestopas.

Cerrar todas todas las aberturas de la carcasa de forma normalizada según EN 60079-1.

5.2 Pasos de conexión

En caso de equipos Ex, la tapa de la carcasa puede abrirse solamente si no existe ninguna atmósfera explosiva.

Proceder de la forma siguiente:

- Desenroscar la tapa de la carcasa
- Soltar la tuerca de compresión del prensaestopas y quitar el tapón
- Pelar aproximadamente 10 cm (4 in) de la envoltura del cable de conexión, quitar aproximadamente 1 cm (0.4 in) de aislamiento a los extremos de los conductores

- 4. Empujar el cable en el sensor a través del prensaestopas
- Subir la palanca de apertura de los terminales con un destornillador (ver la Fig. siguiente)
- Conectar los extremos de los cables en los terminales según el diagrama de cableado
- Empujar hacia abajo las palancas del terminal, el resorte del terminal cierra perceptiblemente
- 8. Comprobar el asiento correcto de los conductores en los terminales tirando ligeramente de ellos
- 9. Apretar la tuerca de compresión del prensaestopas. La junta tiene que abrazar el cable completamente
- 10. Realizar un nuevo ajuste en caso necesario
- 11. Atornillar la tapa de la carcasa

Con ello queda establecida la conexión eléctrica.

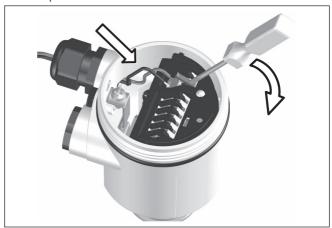


Fig. 8: Pasos de conexión 5 y 6

5.3 Esquema de conexión - Carcasa de una cámara

Resumen de carcasas

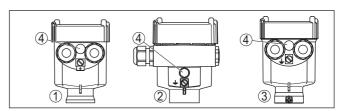


Fig. 9: Variantes de materiales - Carcasa de una cámara

- 1 Plástica (no para polvo Ex)
- 2 Aluminio
- 3 Acero inoxidable
- 4 Elemento de filtrado para compensación de presión de aire o tapón ciego con versión IP66/IP68. 1 bar

Compartimento de la electrónica y de conexiones

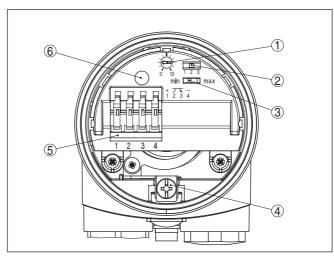


Fig. 10: Compartimento de la electrónica y de conexiones

- 1 Potenciómetro para la adaptación del punto de conmutación
- 2 Interruptor DIL para la selección del rango de medición
- 3 Interruptor DIL para la conmutación de modos de operación
- 4 Terminal de conexión a tierra
- 5 Terminales de conexión
- 6 Lámpara de control

Esquema de conexión

Recomendamos la conexión del VEGACAP 65 de forma tal, que el circuito de corriente de conmutación esté abierto en caso de aviso de nivel límite, rotura de línea o fallo (estado seguro).

Para el control de relés, protecciones, válvulas magnéticas, lámparas de señalización y de aviso, bocinas y entradas de PLC.

Λ

Cuidado:

No hay protección contra polarización inversa. Atender la polaridad de las líneas de salida.

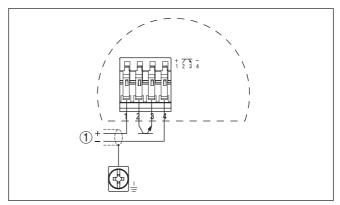


Fig. 11: Esquema de conexión

1 Alimentación de tensión

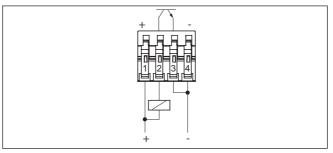


Fig. 12: Comportamiento NPN

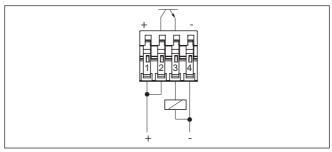


Fig. 13: Comportamiento PNP

5.4 Esquema de conexión - versión IP66/IP68, 1 bar

Ocupación de conductores del cable de conexión

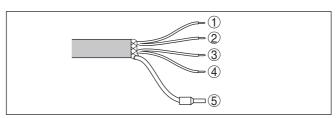


Fig. 14: Ocupación de cables en el cable de conexión. Los números de los conductores concuerdan con los bornes del equipo.

- 1 pardo (+) alimentación de tensión
- 2 Blanco
- 3 Amarillo
- 4 azul (-) alimentación de tensión
- 5 Blindaje

6 Puesta en marcha

6.1 Informaciones generales

Las informaciones entre paréntesis se refieren a las ilustraciones siguientes.

Funcionamiento/Construcción

En el módulo electrónico se encuentran los elementos de indicación y configuración siguientes:

- Potenciómetro para la adaptación del punto de conmutación
- Interruptor DIL para la selección del rango de medición
- Interruptor DIL para la conmutación de modos de operación mín/ máx
- Lámpara de control

•

Indicaciones:

Generalmente, ajustar el modo de operación con el conmutador de modo de operación (3) antes de la puesta en funcionamiento del VEGACAP 65. Si se conmuta el conmutador de modo de operación (3) posteriormente, cambia la salida de conexión. Ello significa que los equipos conectados a continuación se activan eventualmente.

6.2 Elementos de configuración

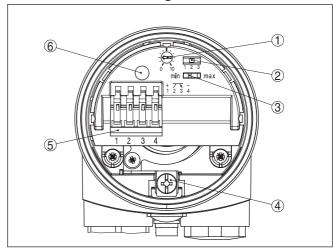


Fig. 15: Módulo electrónico - Salida de transistor

- 1 Potenciómetro para la adaptación del punto de conmutación
- 2 Interruptor DIL para la selección del rango de medición (con tecla de compensación)
- 3 Interruptor DIL para la conmutación de modos de operación
- 4 Terminal de conexión a tierra
- 5 Terminales de conexión
- 6 Lámpara de control

El estado de conexión de la electrónica se puede controlar con la carcasa cerrada (2) (sólo carcasas de plástico) ver " Tabla de funciones".

Indicaciones:

Enroscar la tapa de la carcasa hasta el tope de la rosca, para que la mirilla guede sobre la lámpara de control (LED).

Para ajustar el VEGACAP 65 desenroscar la tapa primeramente

Adaptación del punto de conmutación (1)

Con el potenciómetro puede adaptarse el punto de conmutación al sólido.

Interruptor selector del rango de medición (2)

Con el potenciómetro (1) y el interruptor selector del rango de medición (2) se puede adaptar la sensibilidad de los electrodos a las propiedades eléctricas del producto y a las condiciones en el depósito. Esto es necesario para que el interruptor limitador también pueda detectar p. Ej., productos con una constante dieléctrica muy pequeña o muy grande.

Rango 1: 0 ... 20 pF Rango 2: 0 ... 85 pF Rango 3: 0 ... 450 pF

Conmutación de modos de operación (3)

Con el conmutador de modos de operación (3) se puede modificar el estado de conmutación de la salida de transistores. De esta forma se puede ajustar el modo de operación deseado (captación de máximo o protección contra sobrellenado, captación de mínimo o protección contra marcha en seco).

Recomendamos, la conexión según el principio de corriente de reposo (la salida de conmutación está abierta al alcanzar el punto de conmutación), ya que la salida del transistor asume el mismo estado (seguro) para una interrupción reconocida.

Lámpara de control (6)

Lámpara de control para la indicación del estado de conexión.

- Verde = Salida cerrada
- Rojo = Salida abierta
- rojo (intermitente) = interrupción

Ajuste del punto de conexión

El ajuste del punto de conexión solo es posible en estado de montaje. Los datos entre paréntesis se refieren a los datos en la figura anterior

Electrodos montados verticalmente

Modo max. (Detección de nivel máximo)

- Poner el conmutador de modo de operación (3) en modo de operación máx.
- Poner el interruptor selector del rango de medición (2) en posición 1.
- 3. Llenar el depósito hasta la altura deseada.
- 4. Girar el potenciómetro (1) a 10

Cuando la lámpara de control (6) alumbre en rojo: poner el selector de rango de medición (2) en el rango de medición superior siguiente

Cuando la lámpara de control (6) alumbre en verde: continuar con el punto siguiente.

5. Girar el potenciómetro (1) muy despacio en contra del reloj, hasta que el piloto de control (6) alumbre en rojo

Ahora, el dispositivo de medición está listo para trabajar.

Modo mín. (Detección de nivel mínimo)

- Poner el conmutador de modo de operación (3) en modo de operación mín.
- 2. Poner el interruptor selector del rango de medición (2) en posición 1
- 3. Bajar el nivel hasta el nivel mínimo deseado.
- 4. Girar el potenciómetro (1) a 0, la lámpara de control (6) alumbra
- 5. Girar el potenciómetro (1) muy despacio a favor de las manecillas del reloj, hasta que la lámpara de control (6) alumbre rojo. Si la lámpara de control no alumbran rojo, poner el interruptor selector de rango de medición (2) en la escala inmediata superior, repitiendo el ajuste con el potenciómetro (1), hasta que la lámpara de control alumbre rojo.

Ahora, el dispositivo de medición está listo para trabajar.

6.3 Tabla de funciones

La tabla siguiente ofrece un resumen acerca de los estados de conmutación en dependencia del modo de operación ajustado y el nivel.

	Nivel	Estado de conmutación	Lámpara de control
Modo de operación máx. Protección contra sobre- llenado		cerrada	- \ \.
			Verde
Modo de operación máx. Protección contra sobre- Ilenado		abierta	-\\(\dagger\)-
Modo de operación min.		cerrada	ПОЈО
Protección contra marcha en seco		Cerraua	
			Verde
Modo de operación min. Protección contra marcha en seco		abierta	- <u>></u> -
			Rojo
Fallo de la alimentación de tensión (Modo de operación mín./ máx.)	a voluntad	abierta	0

	Nivel	Estado de conmutación	Lámpara de control
Fallo	a voluntad	abierta	
			rojo intermitente

7 Diagnóstico y Servicio

7.1 Mantenimiento

Mantenimiento

En caso un uso previsto, no se requiere mantenimiento especial alguno durante el régimen normal de funcionamiento.

Limpieza

La limpieza contribuye a que sean visibles la placa de características y las marcas en el equipo.

Para ello hay que observar lo siguiente:

- Emplear únicamente productos de limpieza que no dañen la carcasa, la placa de características ni las juntas
- Utilizar sólo métodos de limpieza que se correspondan con el grado de protección

7.2 Eliminar fallos

Comportamiento en caso de fallos

Es responsabilidad del operador de la instalación, la toma de medidas necesarias para la eliminación de los fallos ocurridos.

Causas de fallo

El aparato ofrece un máximo nivel de seguridad de funcionamiento. Sin embargo, durante el funcionamiento pueden presentarse fallos. Esos fallos pueden tener por ejemplo las causas siguientes:

- Sensor
- Proceso
- Alimentación de tensión
- Evaluación de la señal

Eliminación de fallo

La primera medida es la comprobación de la señal de salida. En muchos casos por esta vía pueden determinarse las causas y eliminar así los fallos.

Comportamiento después de la eliminación de fallos

En dependencia de la causa de interrupción y de las medidas tomadas hay que realizar nuevamente en caso necesario los pasos de procedimiento descritos en el capítulo " *Puesta en marcha*".

Línea directa de asistencia técnica - Servicio 24 horas

Si estas medidas no produjeran ningún resultado, en casos urgentes póngase en contacto con la línea directa de servicio de VEGA llamando al número +49 1805 858550.

El servicio de asistencia técnica está disponible también fuera del horario normal de trabajo, 7 días a la semana durante las 24 horas.

Debido a que ofertamos este servicio a escala mundial, el soporte se realiza en idioma inglés. El servicio es gratuito, el cliente solo paga la tarifa telefónica normal.

Comprobar la señal de conmutación

Error	Causa	Corrección
El equipo avisa cubierto sin cobertura del producto El equipo avisa cubierto con cobertura de	Modo de funcionamien- to falso seleccionado en el controlador	Ajustar el modo de operación correcto en el interruptor de modos de operación del controlador (A: protección contra sobrellenado, B: protección contra marcha en seco). Hay que realizar el cableado de acuerdo con el principio de corriente de reposo.
producto	Tensión de alimentación demasiado baja	Comprobar tensión de alimentación
	Cortocircuito dentro de la sonda de medición, p. Ej. por humedad en la car- casa	Sacar el módulo electrónico de la sonda de medición. Comprobar la resistencia entre las conexiones de en- chufe. Véase las instrucciones siguientes.
	Electrónica defectuosa	Pulsar el conmutador de modos de servicio (A/B) en el controlador. Si el controlador invierte la conexión por esta causa, puede existir un defecto mecánico en la sonda de medición. Si la función de conexión del modo de funcionamiento correcto está defectuosa de nuevo enviar la sonda de medición a reparación.
		Controlar el electrodo contra adherencias eventuales y eliminarlas.
	Punto de montaje desfavorable	Controlar si el electrodo esta cubierto por adherencias en las tubuladuras
		Montar el equipo en un punto, donde no puedan formarse p. Ej cornisas en el depósito.
Lámpara de control inter- mitente en rojo	La electrónica detectó un fallo	Cambiar el equipo o enviarlo a reparación.

dentro de la sonda de medición

Comprobar la resistencia Sacar el módulo electrónico de la sonda de medición. Comprobar la resistencia entre las conexiones de enchufe.

> No puede existir una unión entre ninguna de las conexiones (de alta impedancia). Pero en caso de existir una conexión, cambiar el equipo o enviarlo a reparación

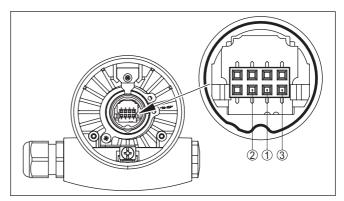


Fig. 16: Comprobar la resistencia dentro de la sonda de medición

- 1 Blindaje
- 2 Sonda de medición
- 3 Potencial a tierra

7.3 Cambio del módulo electrónico

Generalmente todos los módulos electrónicos serie CP60 son intercambiables entre si.

Si desea emplear un módulo electrónico con una salida de señal diferente, puede descargarse el manual de instrucciones adecuado en la zona de descargas de nuestro sitio web.

Versiones electrónicas con ajustes de fábrica específicos (p.ej. detección de espuma) pueden ser recambiadas solo por versiones electrónicas idénticas.

Proceder de la forma siguiente:

- 1. Desconectar la alimentación de voltaje
- 2. Desenroscar la tapa de la carcasa
- Subir la palanca de apertura de los terminales con un destornillador
- 4. Sacar las líneas de alimentación de los terminales
- Aflojar los dos tornillos de fijación con un destornillador (Torx tamaño T10 o ranura 4)

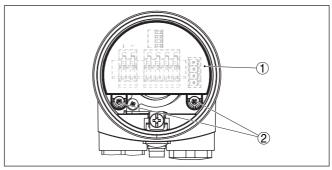


Fig. 17: Zafar los tornillos de sujeción

- 1 Módulo electrónico
- 2 Tornillos de sujeción (2 piezas)
- 6. Sacar el módulo electrónico viejo
- Comparar el módulo electrónico nuevo con el viejo. La placa de tipos del módulo electrónico tiene que coincidir con la placa de tipos módulo electrónico viejo. Esto rige especialmente para los equipos dentro de zonas protegidas contra explosión.
- Comparar las configuraciones de ambos módulos electrónicos. Ajustar los elementos de configuración del módulo electrónico nuevo del mismo modo que los del módulo electrónico viejo.

•

Información:

Prestar atención a que no se vire la carcasa durante el cambio del sistema electrónico. Por esta causa el enchufe puede aparecer en otra posición.

- Enchufar el módulo electrónico cuidadosamente. Durante esta operación atender que el enchufe esté en posición correcta.
- Atornillar y apretar los dos tornillos de fijación con un destornillador (Torx tamaño T10 o ranura 4)
- Conectar los extremos de los cables en los terminales según el diagrama de cableado
- Empujar hacia abajo las palancas del terminal, el resorte del terminal cierra perceptiblemente
- Comprobar el asiento correcto de los conductores en los terminales tirando ligeramente de ellos
- Comprobar la hermeticidad del prensaestopas. La junta tiene que abrazar el cable completamente.
- Montar la sonda de medición en el depósito. Atender que la sonda de medición esté descubierta.

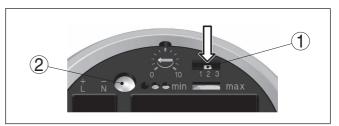


Fig. 18: Teclas de compensación

- 1 Selector de rango de medición (Tecla de compensación)
- 2 Lámpara de control
- 16. Pulsar el selector de rango de medición (1) hasta que la lámpara de control (2) alumbre en verde intermitente.
- 17. Realizar nuevamente el ajuste. Para ello ver capítulo " *Puesta en marcha, elementos de manejo*")
- 18. Atornillar la tapa de la carcasa

Con esto termina el cambio de la electrónica.

7.4 Reducción de la sonda de medición

La sonda de medición se puede recortar a voluntad

- Aflojar las dos espigas roscadas del peso tensor (tornillos Allen) y sacar las espigas roscadas.
- 2. Sacar el cable del peso tensor.
- Para evitar un desempalme del cable de acero durante el corte, hay que estañar el cable alrededor del punto de corte con un cautín o un soplete o atarlo fuertemente con un alambre antes de cortarlo.
- Cortar el cable por el extremo inferior con una segueta de corte de metal o un disco de corte, atendiendo a la longitud correcta.

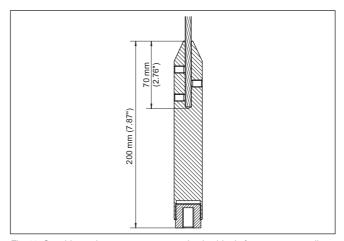


Fig. 19: Considerar el peso tensor, acortando el cable de forma correspondiente

- Deslizar el peso tensor nuevamente a ras sobre el cable, fijándolo con ambas espigas roscadas.
- Montar la sonda de medición en el depósito. Atender que la sonda de medición esté descubierta.

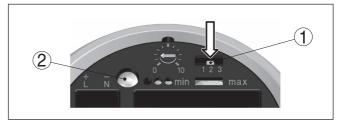


Fig. 20: Teclas de compensación

- 1 Selector de rango de medición (Tecla de compensación)
- 2 Lámpara de control
- 7. Pulsar el selector de rango de medición (1) hasta que la lámpara de control (2) alumbre en verde intermitente.
- De esta forma la sonda de medición queda compensada a la longitud modificada.
- 9. Realizar nuevamente el ajuste. Para ello ver capítulo " *Puesta en marcha, elementos de manejo*")

7.5 Procedimiento en caso de reparación

En el área de descargas de nuestro sitio web encontrará una hoja de retorno de equipo así como información detallada sobre el procedimiento. De esta manera usted contribuye a que podamos realizar la reparación rápidamente y sin necesidad de más consultas.

En caso de reparación, proceda como se indica a continuación:

- Llenar y enviar un formulario para cada equipoLimpiar el equipo y empacarlo a prueba de rotura
- Colocar el formulario lleno y una hoja de datos de seguridad eventualmente en la parte externa del equipo
- Solicite la dirección para la devolución a su representación local. Podrá encontrar ésta en nuestro sitio web.

8 Desmontaje

8.1 Pasos de desmontaje

Advertencia:

Antes del desmontaje, prestar atención a condiciones de proceso peligrosas tales como p. Ej., presión en el depósito, altas temperaturas, productos agresivos o tóxicos, etc.

Atender los capítulos " *Montaje*" y " *Conexión a la alimentación de tensión*" siguiendo los pasos descritos allí análogamente en secuencia inversa.

8.2 Eliminar

Entregue el equipo directamente a una empresa de reciclaje especializada y no utilice para ello los puntos de recogida municipales.

Retire primero las baterías que pudiera haber, siempre que sea posible retirarlas del equipo, y proceda a eliminarlas por separado de la forma debida.

Si hubiera guardados datos personales en el equipo usado por eliminar, hay que borrarlos antes de proceder a la eliminación del equipo.

Si no tiene posibilidades, de reciclar el equipo viejo de forma especializada, consulte con nosotros acerca de las posibilidades de reciclaje o devolución.

Anexo

9.1 Datos técnicos

Nota para equipos homologados

Para equipos homologados (p. ej. con aprobación Ex) rigen los datos técnicos de las correspondientes indicaciones de seguridad. Estos pueden diferir de los datos aquí aducidos por ejemplo para las condiciones de proceso o para la alimentación de tensión.

Todos los documentos de homologación se pueden descargar de nuestra página web.

Datos generales

Material 316L equivalente con 1.4404 o 1.4435

Materiales, en contacto con el producto

 Conexión a proceso - rosca 316L, acero C22.8 (1.0460)

 Conexión al proceso - brida 3161

- Junta del proceso Klingersil C-4400

- Aislamiento (aislamiento parcial) PA. PTFE

- Electrodo (cable con aislamiento 3161 parcial de PTFE: ø 6 mm/0.236 in)

- Electrodo (cable con aislamiento Acero

parcial de PTFE: Ø 8 mm/0.315) 1) Acero

- Electrodo (cable con aislamiento parcial de PA: ø 12 mm/0.472 in) 2)

- Peso tensor 316L + PEEK

Materiales, sin contacto con el producto

 Carcasa de plástico Plástico PBT (poliéster)

 Carcasa de fundición a presión de Carcasa de fundición a presión de aluminio AlSi10Mg. aluminio

con recubrimiento de polvo (Base: Poliéster)

 Carcasa de acero inoxidable (Fundi-316L

ción de precisión)

 Carcasa de acero inoxidable (electropulida)

- Sello entre la carcasa y la tapa de la Silicona

- Terminal de conexión a tierra 3161

 Prensaestopas PA. acero inoxidable. latón

- Junta prensaestopas **NBR** - Tapón prensaestopas PA

Conexiones a proceso

- Rosca para tubos, cilíndrica G1. G1½

(DIN 3852-A)

carcasa

- Rosca para tubos, cónica (AS-1 NPT, 11/2 NPT

ME B1.20.1)

¹⁾ Cable conectado eléctricamente con el peso tensor.

²⁾ Cable conectado eléctricamente con el peso tensor.

- Bridas DIN a partir de DN 40, ASME a partir de 1½"

Peso

- Peso del equipo (en dependencia de 0,8 ... 4 kg (0.18 ... 8.82 lbs)

la conexión a proceso)

- Peso tensor 900 g (32 oz)

Peso del cable: Ø 6 mm (0.236 in)
 Peso del cable: Ø 8 mm (0.315 in)
 220 g/m (2.36 oz/ft)

- Peso del cable: Ø 12 mm (0.472 in) 230 g/m (2.47 oz/ft)

Longitud del sensor (L) 0,4 ... 32 m (1.312 ... 105 ft)

Carga máxima de tracción (cable)

- Aislamiento parcial de PTFE: ø 6 mm 10 KN (2248 lbs)

(0.236 in)

Con aislamiento parcial de PTFE:
 10 KN (2248 lbs)

ø 8 mm (0.315 in)

- Con aislamiento parcial de PA: 10 KN (2248 lbs)

ø 12 mm (0.472 in)

Momento máximo de apriete (rosca - 100 Nm (74 lbf ft)

conexión a proceso)

Par de apriete para prensaestopas de NPT y tubos protectores

- Carcasa de plástico máx. 10 Nm (7.376 lbf ft)

Carcasa de aluminio/acero inoxidable máx. 50 Nm (36.88 lbf ft)
 Frecuencia de medición
 430 kHz

Magnitud de salida

Salida salida de transistor sin potencial, a prueba de cortocir-

cuito sostenido

Corriente bajo carga < 400 mA

Tensión de activación < 55 V DC

Corriente en estado de no conducción < 100 µA

Modos de operación (conmutables) Mín./Máx.

Retardo de conexión

En caso de cobertura 0,7 s
En caso de liberación 0,7 s
En caso de fallo 1 s

Precisión de medición (según DIN EN 60770-1)

Condiciones de referencia según DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)

- Humedad relativa del aire 45 ... 75 %

- Presión de aire +860 ... +1060 mbar/+86 ... +106 kPa

(+12.5 ... +15.4 psig)

Desviación debido a campos electromagnéticos intensos de alta frecuencia dentro el marco de la norma EN 61326 < 3 % del rango de medición ajustado 3)

Influencia de la temperatura ambiente

< 0,15 %/10 K del rango de medición ajustado 4)

Condiciones ambientales

Temperatura ambiental en la carcasa $-40 \dots +80 \,^{\circ}\text{C} \, (-40 \dots +176 \,^{\circ}\text{F})$ Temperatura de almacenaje y transporte $-40 \dots +80 \,^{\circ}\text{C} \, (-40 \dots +176 \,^{\circ}\text{F})$

Condiciones de proceso

Presión de proceso

- Estándar -1 ... +64 bar/-100 ... 6400 kPa (-14.5 ... 928 psig)

- con adaptador tubo de blindaje (PN1) 0 ... +1 bar/0 ... 100 kPa (0 ... 14.5 psig)

Temperatura de proceso VEGACAP 65 de 316L

Aislamiento PTFE
 -50 ... +80 °C (-58 ... +176 °F)
 Aislamiento PA
 -50 ... +80 °C (-58 ... +176 °F)
 -50 ... +150 °C (-58 ... +302 °F)

Temperatura de proceso (temperatura de -50 ... +200 °C (-58 ... +392 °F)

la rosca o de la brida) con adaptador de

temperatura (opcional)

Temperatura de proceso VEGACAP 65 de St C22.8

Aislamiento PTFE
 Aislamiento PA
 Sin aislamiento
 -20 ... +80 °C (-4 ... +176 °F)
 -20 ... +80 °C (-4 ... +176 °F)
 -20 ... +150 °C (-4 ... +302 °F)

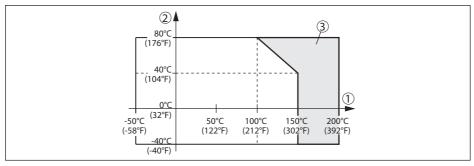


Fig. 21: Temperatura ambiente - Temperatura de proceso

- 1 Temperatura de proceso
- 2 Temperatura ambiente
- 3 Rango compensado de temperatura con adaptador de temperatura

Constante dieléctrica

≥ 1,5

³⁾ Distancia de la conexión a proceso hasta el punto de conmutación ajustado.

⁴⁾ Distancia de la conexión a proceso hasta el punto de conmutación ajustado.

Datos electromecánicos - versión IP66/IP67 e IP66/IP68 (0,2 bar)

Opciones de la entrada de cable

 $\begin{array}{lll} - & Entrada \ de \ cables & M20 \ x \ 1,5; \ 1/2 \ NPT \\ - & Prensaestopas & M20 \ x \ 1,5; \ 1/2 \ NPT \\ - & Tapón \ ciego & M20 \ x \ 1,5; \ 1/2 \ NPT \end{array}$

Tapón roscado
 ½ NPT

Sección del cable (Bornes elásticos)

Cable macizo, hilo
 Hilo con terminal
 1,5 mm² (AWG 24 ... 14)
 1,5 mm² (AWG 24 ... 16)

Datos electromecánicos - versión IP66/IP68 (1 bar)

Opciones de la entrada de cable

 − Entrada de cables
 M20 x 1,5; ½ NPT

 − Prensaestopas
 M20 x 1,5; ½ NPT

 − Tapón ciego
 M20 x 1,5; ½ NPT

Tapón roscado
 ½ NPT

Cable de conexión

 $\begin{array}{lll} - \mbox{ Sección de conductor} & > 0.5 \mbox{ mm}^2 \mbox{ (AWG 20)} \\ - \mbox{ Resistencia del conductor} & < 0.036 \mbox{ } \Omega/m \mbox{ (0.011 } \Omega/ft) \\ - \mbox{ Resistencia a la tracción} & < 1200 \mbox{ N (270 lbf)} \\ - \mbox{ Longitud estándar} & 5 \mbox{ m (16.4 ft)} \\ - \mbox{ Longitud máxima} & 1000 \mbox{ m (3280 ft)} \end{array}$

- Radio de flexión mín. 25 mm (0.984 in) para 25 °C (77 °F)

Diámetro apróx.8 mm (0.315 in)

Color - PE estándar
 Color - PUR estándar
 Color- Versión Ex

Azul

Elementos de configuración

Conmutador de modo de operación

Mín.
 Detección de nivel mínimo o protección contra marcha

en seco

Máx.
 Detección de nivel máximo o protección contra sobre-

llenado

Interruptor DIL para la selección del rango de medición

Rango 1
 Rango 2
 Rango 3
 0 ... 20 pF
 0 ... 85 pF
 0 ... 450 pF

Potenciómetro Adaptación del punto de conmutación

Alimentación de tensión

Tensión de servicio 10 ... 55 V DC

Consumo de potencia máx. 0,5 W

Medidas de protección eléctrica

Tipo de protección Condición para la conservación del grado de protección es el cable adecuado.

Material de la carcasa	Grado de protección según IEC 60529	Tipo de protección según NEMA
Plástico	IP66/IP67	Type 4X
Aluminio	IP66/IP68 (0,2 bar)	Type 6P
	IP68 (1 bar)	Type 6P
Acero inoxidable (electropulido)	IP66/IP68 (0,2 bar)	Type 6P
	IP68 (1 bar)	Type 6P
Acero inoxidable (fundición de precisión)	IP66/IP68 (0,2 bar)	Type 6P
	IP68 (1 bar)	Type 6P

Altura sobre el nivel del mar hasta 5000 m (16404 ft)

Categoría de sobretensión

- hasta 2000 m (6562 ft) III

- hasta 5000 m (16404 ft) II

Seguridad funcional (SIL)

Clase de aislamiento

Seguridad funcional según IEC 61508/IEC 61511

Arquitectura monocanal (1001D) hasta SIL2

- Arquitectura de canales múltiples Ver instrucciones adicionales " Safety Manual (SIL)"

Ш

Homologaciones

Los equipos con aprobación pueden tener datos técnicos diferentes en dependencia de la versión.

Por lo tanto, para estos equipos hay que observar los documentos de homologación correspondientes. Éstos están incluidos en el volumen de suministro o se pueden descargar introduciendo el número de serie de su equipo en el campo de búsqueda www.vega.com o a través del área de descarga general.

9.2 Dimensiones

Los dibujos acotados siguientes representan solo una parte de las versiones posibles. Dibujos acotados detallados se pueden descargar de www.vega.com/downloads y " Dibujos".

Carcasa en grado de protección IP66/IP67 e IP66/IP68 (0,2 bar)

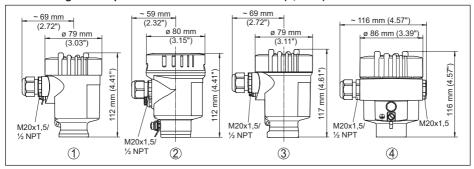


Fig. 22: Versiones de carcasa en grado de protección IP66/IP67 e IP66/IP68 (0,2 bar)

- 1 Cámara única de plástico
- 2 Cámara única de acero inoxidable (electropulida)
- 3 Cámara única de acero inoxidable (Fundición de precisión)
- 4 Aluminio de cámara única

Carcasa en grado de protección IP66/IP68 (1 bar)

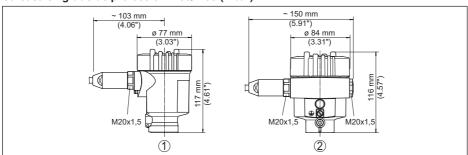


Fig. 23: Variante de carcasa en grado de protección IP66/IP68 (1 bar)

- 1 Cámara única de acero inoxidable (Fundición de precisión)
- 2 Aluminio de cámara única

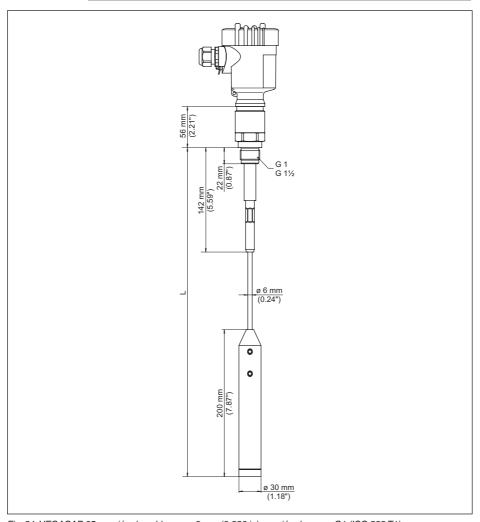


Fig. 24: VEGACAP 65, versión de cable con ø 6 mm (0.236 in), versión de rosca G1 (ISO 228 T1)

L Longitud del sensor, ver capítulo " Datos técnicos"

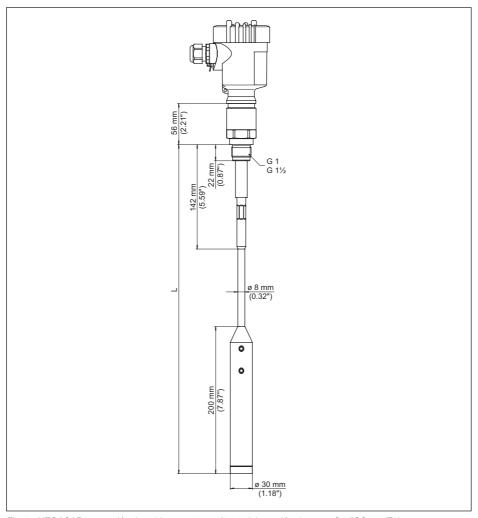


Fig. 25: VEGACAP 65, versión de cable con ø 8 mm (0.315 in), versión de rosca G1 (ISO 228 T1)

L Longitud del sensor, ver capítulo " Datos técnicos"

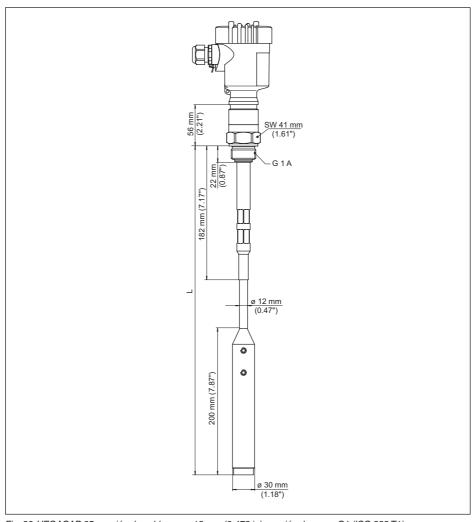


Fig. 26: VEGACAP 65, versión de cable con ø 12 mm (0.472 in), versión de rosca G1 (ISO 228 T1)

L Longitud del sensor, ver capítulo " Datos técnicos"

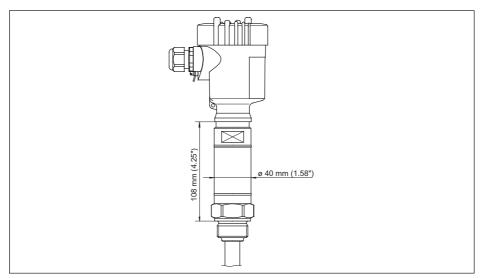


Fig. 27: Adaptador de temperatura

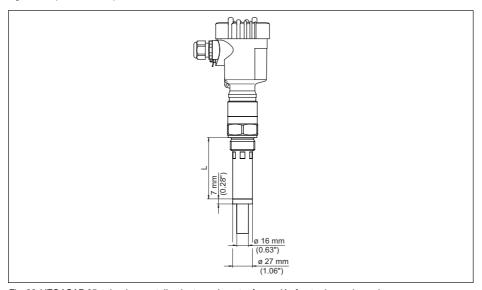


Fig. 28: VEGACAP 65, tubo de apantallamiento p. ej. contra formación fuerte de condensado

L Longitud, del tubo de apantallamiento - véase capitulo " Datos técnicos"

9.3 Derechos de protección industrial

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

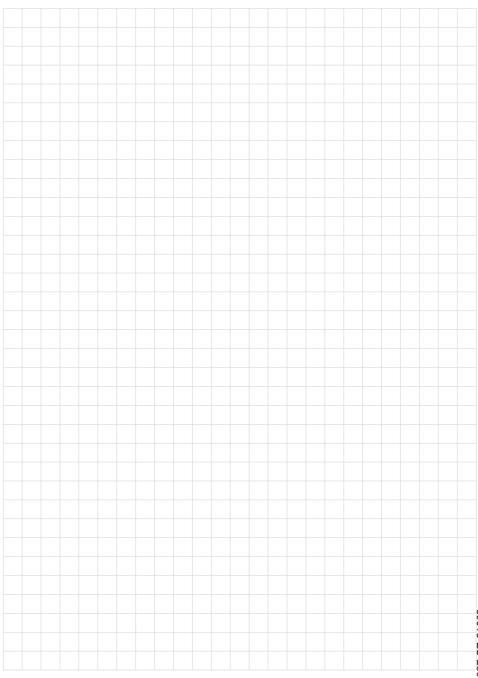
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

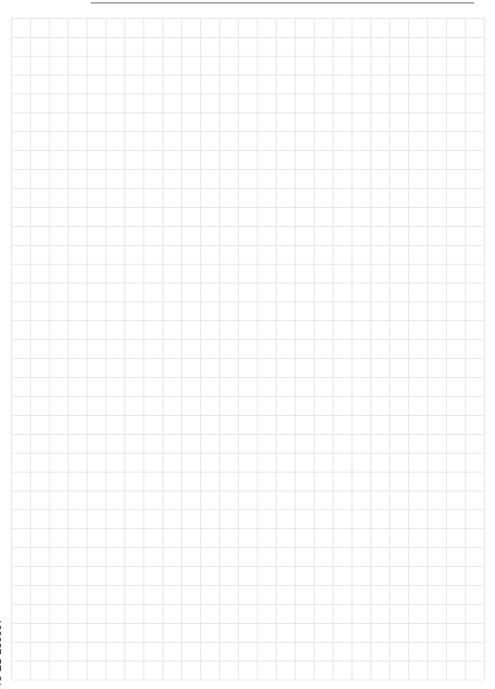
Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.


VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。


9.4 Marca registrada

Todas las marcas y nombres comerciales o empresariales empleados pertenecen al propietario/autor legal.

Fecha de impresión:

Las informaciones acera del alcance de suministros, aplicación, uso y condiciones de funcionamiento de los sensores y los sistemas de análisis corresponden con los conocimientos existentes al momento de la impresión.

Reservado el derecho de modificación

© VEGA Grieshaber KG, Schiltach/Germany 2023

((

0018 EC 230801