Manual de instruções

Sensor de ultrassom para a medição contínua de nível de enchimento

VEGASON 61

Foundation Fieldbus

Document ID: 28790

Índice

1	Sobr	e o presente documento	4		
	1.1	Função	4		
	1.2	Grupo-alvo	4		
	1.3	Simbologia utilizada	4		
2	Para sua segurança				
	2.1	Pessoal autorizado			
	2.2	Utilização conforme a finalidade	5		
	2.3	Advertência sobre uso incorreto			
	2.4	Instruções gerais de segurança	5		
	2.5	Conformidade			
	2.6	Atendimento às recomendações NAMUR			
	2.7	Proteção ambiental			
3	Descrição do produto				
	3.1	Construção			
	3.2	Modo de trabalho	8		
	3.3	Embalagem, transporte e armazenamento			
	3.4	Acessórios	10		
4	Montar				
	4.1	Informações gerais	11		
	4.2	Propriedades da caixa	12		
	4.3	Instruções de montagem	15		
5	Conectar à alimentação de tensão				
	5.1	Preparar a conexão			
	5.2	Passos para a conexão			
	5.3	Esquema de ligações da caixa de uma câmara			
	5.4	Esquema de ligações da caixa de duas câmaras			
	5.5	Esquema de ligações - Modelo IP66/IP68 (1 bar)			
	5.6	Fase de inicialização	2		
6	Colocação em funcionamento com o módulo de visualização e configuração PLICS-COM				
		Colocar o módulo de visualização e configuração			
	6.1 6.2	Sistema de configuração	20		
	6.3	Passos para a colocação em funcionamento	20		
	6.4	Plano de menus			
	6.5	Armazenamento dos dados de parametrização			
7	Colocação em funcionamento com o PACTware				
•	7.1	Conectar o PC via VEGACONNECT			
	7.2	Ajuste de parâmetros			
	7.3	Salvar dados de parametrização			
8	Colocação em funcionamento com outros sistemas4				
	8.1	Programas de configuração DD			
9	Manutenção e eliminação de falhas				
	9.1	Conservar			
	9.2	Eliminar falhas	48		
	9.3	Trocar o módulo elétrônico			
	9.4	Atualização do software	50		

	9.5	Procedimento para conserto	50
10	Desm	ontagem	52
		Passos de desmontagem	
	10.2	Eliminação de resíduos	52
11	Anex	53	
	11.1	Dados técnicos	53
	11.2	Comunicação de aparelhos Foundation Fieldbus	57
	11.3	Dimensões	61
	11.4	Proteção dos direitos comerciais	65
	11.5	Marcas registradas	65

\

Instruções de segurança para áreas Ex:

Observe em aplicações Éx as instruções de segurança específicas. Tais instruções são fornecidas com todos os dispositivo com homologação EX e constituem parte integrante do manual de instruções.

Versão redacional: 2023-10-24

1 Sobre o presente documento

1.1 Função

O presente manual fornece-lhe as informações necessárias para a montagem, conexão e colocação do dispositivo em funcionamento, além de instruções importantes para a manutenção, eliminação de falhas e troca de componentes. Leia-o, portanto, antes do comissionamento e guarde-o bem como parte do produto, próximo ao dispositivo e sempre acessível.

1.2 Grupo-alvo

Este manual de instruções destina-se a pessoal devidamente formado e qualificado, deve ficar acessível a esse pessoal e seu conteúdo tem que ser aplicado.

1.3 Simbologia utilizada

ID do documento

Este símbolo na capa deste manual indica o ID documento. Introduzindo-se o ID do documento no site www.vega.com, chega-se ao documento para download.

Informação, **nota**, **dica**: este símbolo identifica informações adicionais úteis e dicas para um bom trabalho.

Nota: este símbolo identifica notas para evitar falhas, erros de funcionamento, danos no dispositivo e na instalação.

Cuidado: ignorar informações marcadas com este símbolo pode provocar danos em pessoas.

Advertência: ignorar informações marcadas com este símbolo pode provocar danos sérios ou fatais em pessoas.

Perigo: ignorar informações marcadas com este símbolo provocará danos sérios ou fatais em pessoas.

Aplicações em áreas com perigo de explosão

Este símbolo indica informações especiais para aplicações em áreas com perigo de explosão.

Lista

O ponto antes do texto indica uma lista sem sequência obrigatória.

1 Sequência definida

Números antes do texto indicam passos a serem executados numa sequência definida.

Eliminação

Este símbolo indica informações especiais para aplicações para a eliminação.

2 Para sua segurança

2.1 Pessoal autorizado

Todas as ações descritas nesta documentação só podem ser efetuadas por pessoal técnico devidamente qualificado e autorizado.

Ao efetuar trabalhos no e com o dispositivo, utilize o equipamento de proteção pessoal necessário.

2.2 Utilização conforme a finalidade

O VEGASON 61 é um sensor para a medição contínua de nível de enchimento.

Informações detalhadas sobre a área de utilização podem ser lidas no capítulo "Descrição do produto".

A segurança operacional do dispositivo só ficará garantida se ele for utilizado conforme a sua finalidade e de acordo com as informações contidas no manual de instruções e em eventuais instruções complementares.

2.3 Advertência sobre uso incorreto

Se o produto for utilizado de forma incorreta ou não de acordo com a sua finalidade, podem surgir deste dispositivo perigos específicos da aplicação, por exemplo, um transbordo do reservatório, devido à montagem errada ou ajuste inadequado. Isso pode causar danos materiais, pessoais ou ambientais. Isso pode prejudicar também as propriedades de proteção do dispositivo.

2.4 Instruções gerais de segurança

O dispositivo atende aos padrões técnicos atuais, sob observação dos respectivos regulamentos e diretrizes. Ele só pode ser utilizado se estiver em perfeito estado técnico e um funcionamento seguro esteja garantido. A empresa proprietária do dispositivo é responsável pelo seu funcionamento correto. No caso de uso em produtos agressivos ou corrosivos que possam danificar o dispositivo, o usuário tem que se assegurar, através de medidas apropriadas, do seu funcionamento correto.

É necessário observar as instruções de segurança contidas neste manual, os padrões nacionais de instalação e os regulamentos vigentes relativos à segurança e à prevenção de acidentes também precisam ser observados.

Por motivos de segurança e garantia, intervenções que forem além dos manuseios descritos no manual de instruções só podem ser efetuadas por pessoal autorizado por nós. Modificações feitas por conta própria são expressamente proibidas. Por motivos de segurança, só podem ser usados acessórios indicados por nós.

Para evitar perigos, devem ser respeitadas as sinalizações e instrucões de seguranca fixadas no dispositivo.

2.5 Conformidade

O dispositivo atende as exigências legais das diretrizes ou regulamentos técnicos específicos do país em questão. Confirmamos a conformidade através de uma marcação correspondente.

As respectivas declarações de conformidade podem ser encontradas em nosso site.

2.6 Atendimento às recomendações NAMUR

A NAMUR uma associação que atua na área de automação da indústria de processamento na Alemanha. As recomendações NAMUR publicadas valem como padrões na instrumentação de campo.

O dispositivo atende as exigências das seguintes recomendações NAMUR:

- NE 21: 2012 Compatibilidade eletromagnética de meios operacionais
- NE 43 Nível de sinais para a informação de falha de transmissores
- NE 53 Compatibilidade de aparelhos de campo e componentes de visualização/configuração

Para maiores informações, vide www.namur.de.

2.7 Proteção ambiental

A proteção dos recursos ambientais é uma das nossas mais importantes tarefas. Por isso, introduzimos um sistema de gestão ambiental com o objetivo de aperfeiçoar continuamente a proteção ecológica em nossa empresa. Nosso sistema de gestão ambiental foi certificado conforme a norma DIN EN ISO 14001.

Ajude-nos a cumprir essa meta, observando as instruções relativas ao meio ambiente contidas neste manual:

- Capítulo "Embalagem, transporte e armazenamento"
- Capítulo "Eliminação controlada do dispositivo"

3 Descrição do produto

3.1 Construção

Volume de fornecimento

São fornecidos os seguintes componentes:

Sensor de ultrassom

O escopo adicional de fornecimento consiste em:

- Documentação
 - Guia rápido VEGASON 61
 - Instruções para acessórios opcionais para o dispositivo
 - "Instruções de segurança" específicas para aplicações Ex (em modelos Ex)
 - Se for o caso, outros certificados

Informação:

No manual de instruções são descritas também características opcionais do dispositivo. O respectivo volume de fornecimento depende da especificação da encomenda.

Componentes

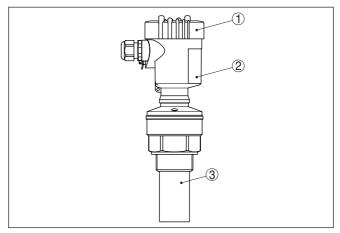


Fig. 1: VEGASON 61, Modelo com caixa de plástico

- Tampa da caixa com PLICSCOM integrado (opcional)
- Caixa com sistema eletrônico, opcionalmente com conector de encaixe
- 3 Conexão do processo com transdutor acústico

O VEGASON 61 é composto dos componentes a seguir:

- Transdutor acústico com sensor de temperatura integrado
- Caixa com sistema eletrônico, opcionalmente com conector de encaixe
- Tampa da caixa, opcionalmente com módulo de visualização e configuração PLICSCOM

Os componentes estão à disposição em diferentes modelos.

Placa de características

A placa de características contém os dados mais importantes para a identificação e para a utilização do dispositivo:

- Tipo de dispositivo
- Informações sobre homologações
- Informações sobre a configuração
- Dados técnicos
- Número de série do dispositivo
- Código Q para identificação do aparelho
- Código numérico para o acesso Bluetooth (opcional)
- Informações do fabricante

Documentos e software

Existem as seguintes possibilidades para encontrar os dados do pedido, os documentos ou o software do seu aparelho:

- Visite "www.vega.com" e digite no campo de pesquisa o número de série de seu dispositivo.
- Escaneie o código QR que se encontra na placa de características.
- Abra o app da VEGA Tools e introduza em "Documentação" o número de série.

3.2 Modo de trabalho

Área de aplicação

O VEGASON 61 é um um sensor de ultrassom para a medição contínua de nível de enchimento. Ele é apropriado para produtos líquidos e sólidos em quase todas as áreas industriais, especialmente na área de abastecimento e saneamento de água.

Princípio de funcionamento

O transdutor acústico do sensor de ultrassom emite impulsos curtos de ultrassom para o produto a ser medido. Esses impulsos são refletidos pela superfície do produto e recebidos novamente pelo transdutor acústico como ecos. O tempo entre o envio e o recebimento dos impulsos de ultrassom é proporcional à distância e, consequentemente, ao nível de enchimento. O nível de enchimento assim detectado é convertido para um respectivo sinal de saída e emitido como valor de medição.

Alimentação e comunicação do barramento

A alimentação de tensão ocorre através do H1-Fieldbus. Uma linha de dois condutores conforme a especificação Fieldbus serve ao mesmo tempo para a alimentação e para a transmissão digital de dados de vários sensores. Essa linha pode ser utilizada em duas diferentes variantes:

- através de uma placa de interface H1 no sistema de controle e alimentação adicional de corrente
- através de um dispositivo de conexão com HSE (High speed Ethernet) e alimentação de corrente adicional de acordo com IEC 61158-2

DD/CFF

Os arquivos DD (Device Descriptions) e CFF (Capability Files) necessários para o projeto e a configuração da rede de comunicação FF (Foundation Fieldbus) podem ser encontrados na área de download da homepage da VEGA www.vega.com em "Services - Downloads - Software - Foundation Fieldbus". Lá podem ser encontrados também os respectivos certificados. É também possível solicitar por e-mail um CD com os arquivos e certificados, através do endereço info@de.

vega.com ou por telefone junto a qualquer representante da VEGA. Indicar "DRIVER.S" como número de encomenda.

A iluminação de fundo do módulo de visualização e configuração é alimentada pelo sensor, sendo pré-requisito um determinado valor da tensão de servico.

Os dados da alimentação de tensão podem ser lidos no capítulo "Dados técnicos".

O aquecimento opcional requer uma tensão de operação própria. Mais detalhes podem ser obtidos nas instruções complementares "Aquecimento para o módulo de visualização e configuração".

Esta função não está disponível em geral para aparelhos com homologação.

3.3 Embalagem, transporte e armazenamento

Embalagem

O seu dispositivo foi protegido para o transporte até o local de utilização por uma embalagem. Os esforços sofridos durante o transporte foram testados de acordo com a norma ISO 4180.

Em dispositivos padrão, a embalagem é de papelão, é ecológica e pode ser reciclada. Em modelos especiais é utilizada adicionalmente espuma ou folha de PE. Elimine o material da embalagem através de empresas especializadas em reciclagem.

Transporte

Para o transporte têm que ser observadas as instruções apresentadas na embalagem. A não observância dessas instruções pode causar danos no dispositivo.

Inspeção após o transporte

Imediatamente após o recebimento, controle se o produto está completo e se ocorreram eventuais danos durante o transporte. Danos causados pelo transporte ou falhas ocultas devem ser tratados do modo devido.

Armazenamento

As embalagens devem ser mantidas fechadas até a montagem do dispositivo e devem ser observadas as marcas de orientação e de armazenamento apresentadas no exterior das mesmas.

Caso não seja indicado algo diferente, guarde os dispositivos embalados somente sob as condições a seguir:

- Não armazenar ao ar livre
- Armazenar em lugar seco e livre de pó
- Não expor a produtos agressivos
- Proteger contra raios solares
- Evitar vibrações mecânicas

Temperatura de transporte e armazenamento

- Consulte a temperatura de armazenamento e transporte em "Anexo Dados técnicos Condições ambientais"
- Umidade relativa do ar de 20 ... 85 %

Suspender e transportar

No caso de peso de dispositivos acima de 18 kg (39.68 lbs), devem ser usados dispositivos apropriados e homologados para suspendê-los ou transportá-los.

3.4 Acessórios

As instruções para os acessórios apresentados encontram-se na área de download de nosso site.

Módulo de visualização e

configuração

O módulo de visualização e configuração destina-se à exibição dos

valores medidos, à configuração e ao diagnóstico.

O módulo Bluetooth integrado (opcional) permite a configuração sem

fio através de dispositivos de configuração padrão.

VEGACONNECT O adaptador de interface VEGACONNECT permite a conexão de

aparelhos com função de comunicação através da interface USB de

um PC.

VEGADIS 81 O VEGADIS 81 é uma unidade externa de leitura e comando para

sensores plics® da VEGA.

Cobertura de proteção A capa protege a caixa do sensor contra sujeira e aquecimento

excessivo por raios solares.

Flanges Estão disponíveis flanges roscados em diversos modelos, corres-

pondentes aos seguintes padrões: DIN 2501, EN 1092-1, BS 10,

ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

4 Montar

4.1 Informações gerais

Condições do processo

Nota:

Por razões de segurança, o dispositivo só pode ser utilizado dentro das condições admissíveis do processo. Informações a esse respeito podem ser encontradas no capítulo "Dados técnicos" do manual de instrucões na placa de características.

Assegure-se, antes da montagem, de que todas as peças do dispositivo que se encontram no processo sejam apropriadas para as condições que regem o processo.

Entre elas, especialmente:

- Peça ativa na medição
- Conexão do processo
- Vedação do processo

São condições do processo especialmente:

- Pressão do processo
- Temperatura do processo
- Propriedades químicas dos produtos
- Abrasão e influências mecânicas

Aptidão para as condições ambientais

O dispositivo é apropriado para condições ambientais normais e ampliadas conforme DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1. Ele pode ser usado tanto em recinto fechado como ao ar livre.

Posição de montagem

Selecione a posição de montagem de tal modo que seja possível aceder facilmente o aparelho ao montar, conectar ou na instalação posterior do módulo de visualização e configuração. Para que isso seja possível, a carcaça do aparelho pode ser girada sem uso de ferramentas em 330°. Além disso, o módulo de visualização e configuração pode ser montado com uma variação de posição em passos de 90°.

Umidade

Utilize o cabo recomendado (vide capítulo "Conexão à alimentação de tensão") e aperte firmemente o prensa-cabo.

Seu aparelho pode ser adicionalmente protegido contra a entrada de umidade se o cabo de conexão for montado com uma curva para baixo, antes de entrar no prensa-cabo. Desse modo, água da chuva ou condensado poderá gotejar para baixo. Isso vale especialmente para a montagem ao ar livre, em recintos com perigo de umidade (por exemplo, durante processos de limpeza) ou em reservatórios refrigerados ou aquecidos.

Para manter o grau de proteção do dispositivo, assegure-se de que sua tampa esteja fechada durante a operação e, se for o caso, travada.

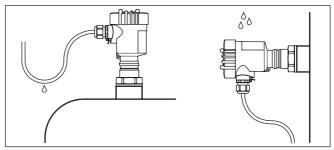


Fig. 2: Medidas para evitar a entrada de umidade

Montagens das entradas de cabo - rosca NPT Prensa-cabos

Rosca métrica

Em caixas do dispositivo com roscas métricas, os prensa-cabos são enroscados de fábrica. Eles são protegidos para o transporte por bujões de plástico.

É necessário remover esses bujões antes de efetuar a conexão elétrica.

Rosca NPT

Em caixas de dispositivo com roscas NPT autovedantes, os prensacabos não podem ser enroscados pela fábrica. Por isso motivo, os orifícios livres de passagem dos cabos são protegidos para o transporte com tampas de proteção contra pó vermelhas.

Essas capas protetoras têm que ser substituídas por prensa-cabos homologados ou fechadas por bujões apropriados antes da colocação em funcionamento.

Pressão/vácuo

Sobrepressão no reservatório não influencia o VEGASON 61. Vácuo atenua impulsos de ultra-som. Isso interfere nos resultados da medição, principalmente se o nível de enchimento for muito baixo. A partir de -0,2 bar (-20 kPa), deveria ser utilizado outro princípio de medição, como, por exemplo, radar ou radares guiados (TDR).

4.2 Propriedades da caixa

Elemento de filtragem

O elemento filtrante na caixa serve para ventilá-la.

Para uma ventilação eficaz, o elemento filtrante deve estar sempre livre de acúmulos. Portanto, monte o dispositivo de modo que o elemento filtrante fique protegido de acúmulos.

Nota:

Não utilize um lava-jato para limpar as caixas com graus de proteção padrão. O elemento filtrante poderia ser danificado e a umidade poderia penetrar na caixa.

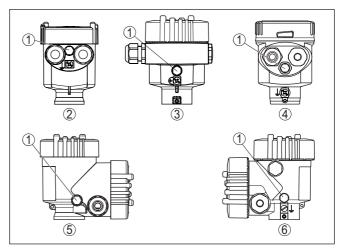


Fig. 3: Posição do elemento filtrante dependendo da caixa

- 1 Elemento de filtragem
- 2 Caixa de uma câmara de plástico
- 3 Caixa de alumínio de uma câmara, caixa de aço inoxidável de duas câmaras (fundicão fina)
- 4 Caixa de uma câmara de aço inoxidável (eletropolido)
- 5 Caixa de duas câmaras de plástico
- 6 Alumínio duas câmaras

Informação:

No caso de dispositivos com grau de proteção IP66/IP68 (1 bar), a ventilação é feita através de um capilar no cabo permanentemente conectado. Nesses dispositivos, é instalado na caixa um bujão em vez do elemento filtrante.

Alinhamento da caixa

A caixa do VEGASON 61 pode ser completamente girada em 360°. Isso permite a leitura ideal do display e facilita a entrada do cabo. 1)

Em caixas de plástico ou de aço inoxidável eletropolido, isso pode ser feito sem necessidade de ferramentas.

No caso de caixa de alumínio ou aço inoxidável (fundição de precisão), é preciso soltar um parafuso de retenção para girá-la, vide a figura a seguir:

¹⁾ Nenhuma limitação da rotação por batente

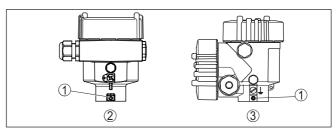


Fig. 4: Posição do parafuso de retenção, dependendo da caixa

- 1 Parafuso de retenção
- 2 Caixa de uma câmara de alumínio, de aço inoxidável (fundição fina)
- 3 Alumínio duas câmaras

Proceda da seguinte maneira:

- 1. Soltar o parafuso de retenção (chave Allen, tamanho 2,5)
- 2. Girar a caixa para a posição desejada
- Aperte novamente o parafuso de retenção (torque: vide capítulo "Dados técnicos").

Travamento da tampa

Em caixa de alumínio ou aço inoxidável (fundição de precisão), a tampa da caixa pode ser travada com um parafuso. Isso protege o dispositivo contra uma abertura não autorizada da caixa.

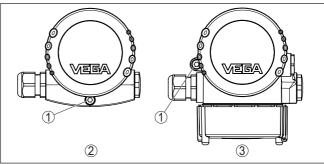


Fig. 5: Posição do parafuso de retenção, dependendo da caixa

- Parafuso de retenção
- 2 Caixa de uma câmara de alumínio, de aço inoxidável (fundição fina)
- 3 Alumínio duas câmaras

Para fixar a tampa, proceda do seguinte modo:

- 1. Enroscar a tampa na caixa firmemente com a mão
- Desenroscar completamente o parafuso de retenção da caixa com uma chave de boca de tamanho 4
- 3. Controle se deixou de ser possível girar a tampa

Para destravar a tampa, proceda na sequência inversa.

•

Nota:

O parafuso de retenção possui dois furos transversais na cabeça para que possa ser adicionalmente selado.

Enroscar

4.3 Instruções de montagem

Enroscar o VEGASON 61 com uma chave de boca adequada pelo sextavado da luva. Consultar o torque de aperto no capítulo "Dados técnicos".

Advertência:

A caixa não pode ser utilizada para enroscar o aparelho! Perigo de danos no mecanismo de rotação da caixa.

Posição de montagem

Monte o sensor numa posição distante pelo menos 200 mm (7.874 in) da parede do reservatório. Se o sensor for montado no centro de tampas côncavas ou redondas do reservatório, podem ocorrer ecos múltiplos, que podem ser suprimidos através da devida calibração (vide "Colocação em funcionamento").

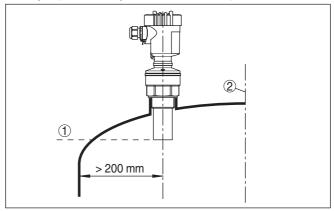


Fig. 6: Montagem em tampa redonda do reservatório

- 1 Nível de referência
- 2 Centro do reservatório ou eixo simétrico

Se esta distância não puder ser mantida, deveria ser realizado uma supressão de sinais falsos na colocação em funcionamento. Isso vale principalmente se houver perigo de incrustações na parede do reservatório. Nesse caso, recomenda-se a realização da supressão de sinais falsos mais tarde, quando já houver incrustações.

Em reservatórios com fundo cônico, pode ser vantajoso montar o dispositivo no centro do reservatório, pois assim é possível uma medição até o fundo.

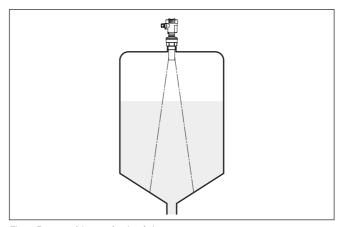


Fig. 7: Reservatório com fundo cônico

Luva

As luvas devem ser prefenrencialmente dimensionadas de tal modo que o lado inferior do transdutor acústico sobressaia pelo menos 10 mm (0.394 in) da luva.

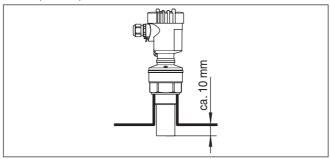


Fig. 8: Recomendação para a montagem em luva

No caso de boas propriedades de reflexão do produto armazenado no reservatório, o VEGASON 61 pode também ser montado em luvas mais altas que o comprimento do transdutor acústico. Os valores recomendados para a altura das luvas são mostrados na figura a seguir. A extremidade da luva deveria nesse caso ser lisa e estar livre de rebarbas e, se possível, ser até arredondadas. Efetue uma supressão de sinais falsos.

Fig. 9: Medidas diferentes da luva

Alinhamento do sensor

Alinhe o aparelho em líquidos de forma mais perpendicular possível em relação à superfície do produto, a fim de atingir resultados ideais na medição.

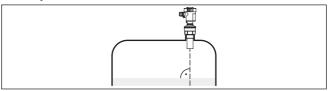


Fig. 10: Alinhamento em líquidos

Para reduzir a distância de bloqueio em relação ao produto, o VEGASON 61 pode ser também montado com um espelho defletor. Isso permite que se possa encher o reservatório quase totalmente. Esse método é especialmente apropriado para reservatórios abertos, como, por exemplo, bacias de coleta de água de chuva.

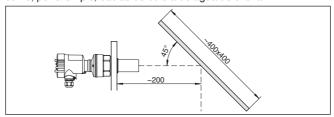


Fig. 11: Espelho defletor

Componentes do reservatório

O local de montagem do sensor de ultrassom deveria ser selecionado de tal modo que nenhum componente interno do reservatório se cruze com os sinais ultrassônicos.

Componentes do reservatório, como escadas, interruptores limitadores, serpentinas de aquecimento, reforços do reservatório, etc. podem gerar ecos falsos e desviar o eco útil. Prestar atenção ao projetar a posição de medição para que o caminho dos sinais ultrassônicos para o produto esteja livre.

Caso haja anteparos montados no interior do reservatório, efetuar uma supressão de sinais de interferência durante a colocação do dispositivo em funcionamento.

Caso grandes anteparos no reservatório, como, por exemplo, travessas e suportes, causarem ecos falsos, isso pode ser atenuado através de medidas adicionais. Pequenas chapas metálicas ou de plástico, montadas de forma inclinada sobre os anteparos, dispersam os sinais de ultrassom, evitando assim de forma eficaz uma reflexão direta de ecos falsos.

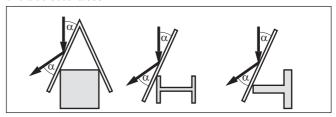


Fig. 12: Cobrir os perfis lisos com defletores

Agitadores

Caso haja um agitador no reservatório, deveria ser efetuada uma supressão de sinais falsos com o agitador em funcionamento. Isso garante que as reflexões de interferência do agitador sejam armazenadas em diferentes posições.

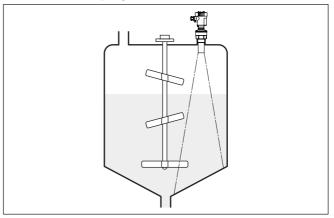


Fig. 13: Agitadores

Fluxo de entrada do produto

Não monte os dispositivos sobre ou no fluxo de enchimento. Assegure-se de que seja detectada a superfície do produto e não o seu fluxo de entrada.

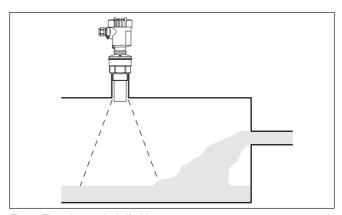


Fig. 14: Fluxo de entrada do líquido

Espuma

Através do enchimento, de agitadores e outros processos no reservatório, pode ocorrer na superfície do produto a formação de espuma, em parte muito consistente. Essa espuma pode amortecer significativamente o sinal enviado.

Caso ocorram erros de medição devido a espuma, o dispositivo deveria ser montado em um tubo vertical ou deveriam ser utilizados sensores mais apropriados com radar de onda guiada (TDR).

Radar guiado não sofre influências pela espuma e é especialmente apropriado para essa aplicação.

Movimentos de ar

Caso haja fortes correntes de ar, por exemplo, na montagem ao ar livre e vento forte ou através de turbulências no reservatório, por exemplo, devido a rede-moinhos causados pela sucção, o VEGASON 61 deveria ser montado num tubo vertical ou deveria ser utilizado um outro princípio de medição, como radar ou radar guiado (TDR).

Medição em tubo vertical

Através da utilização do sensor num tubo vertical (tubo curvo ou tubo de by-pass), evita-se influências causadas pelos componentes do reservatório, formação de espuma e turbulências.

Tubos verticais têm de atingir a altura mínima de enchimento desejada, pois a medição só é possível dentro do tubo.

20

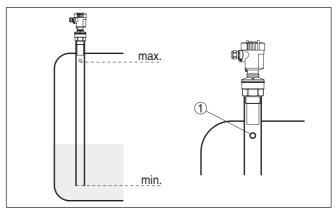


Fig. 15: Tubo vertical no tanque

1 Orifício de purga de ar: ø 5 ... 10 mm (0.197 ... 0.394 in)

O VEGASON 61 pode ser utilizado com tubos de diâmetro a partir de 40 mm (1.575 in).

Evitar grandes fendas e costuras de solda grossas ao unir os tubos. Executar uma supressão geral de sinais falsos.

Uma medição no tubo vertical não faz sentido para produtos com forte tendência a incrustações.

5 Conectar à alimentação de tensão

5.1 Preparar a conexão

Instruções de segurança

Observe sempre as seguintes instruções de segurança:

Advertência:

Conecte sempre o aparelho com a tensão desligada.

- A conexão elétrica só deve ser efetuada por pessoal técnico qualificado e autorizado pelo proprietário do equipamento.
- No caso de perigo de ocorrência de sobretensões, instalar dispositivos de proteção adequados.

Alimentação de tensão

O aparelho necessita de uma tensão de serviço de 9 ... 32 V DC. A tensão de serviço e o sinal digital do barramento são conduzidos pelo mesmo cabo de dois fios. O abastecimento é efetuado através da alimentação de tensão H1.

Cabo de ligação

A conexão é feita com cabo blindado conforme as especificações Fieldbus.

Assegure-se de que o cabo utilizado apresente a resistência térmica e a segurança contra incêndio necessárias para a temperatura ambiente máxima possível.

Em aparelhos com caixa e prensa-cabo, utilize cabos com seção transversal redonda. Controle para qual diâmetro externo do cabo o prensa-cabo é apropriado, para que fique garantida a vedação do prensa-cabo (grau de proteção IP).

Utilize um prensa-cabo apropriado para o diâmetro do cabo.

Cuidar para que toda a instalação seja efetuada conforme as especificações Fieldbus. Deve-se observar principalmente a montagem das respectivas resistências terminais no bus.

Prensa-cabos

Rosca métrica

Em caixas do dispositivo com roscas métricas, os prensa-cabos são enroscados de fábrica. Eles são protegidos para o transporte por bujões de plástico.

Nota:

É necessário remover esses bujões antes de efetuar a conexão elétrica.

Rosca NPT

Em caixas de dispositivo com roscas NPT autovedantes, os prensacabos não podem ser enroscados pela fábrica. Por isso motivo, os orifícios livres de passagem dos cabos são protegidos para o transporte com tampas de proteção contra pó vermelhas.

Nota:

Essas capas protetoras têm que ser substituídas por prensa-cabos homologados ou fechadas por bujões apropriados antes da colocação em funcionamento.

Numa caixa de plástico, o prensa-cabo de NPT e o conduíte de aço têm que ser enroscado sem graxa.

Torque máximo de aperto para todas as caixas: vide capítulo "Dados técnicos".

Blindagem do cabo e aterramento

Em sistemas com compensação de potencial, ligue a blindagem do cabo na fonte de alimentação, na caixa de conexão e no sensor diretamente ao potencial da terra. Para isso, a blindagem do sensor tem que ser conectada ao terminal interno de aterramento. O terminal externo de aterramento da caixa tem que ser ligado à compensação de potencial com baixa impedância.

Em sistemas sem compensação de potencial, conecte a blindagem na fonte de alimentação e no sensor diretamente ao potencial da terra. Na caixa de conexão ou no distribuidor em T, a blindagem do cabo curto de derivação para o sensor não pode ser ligado nem ao potencial da terra nem a uma outra blindagem. As blindagens do cabo para a fonte de alimentação e para o próximo distribuidor têm que ser interligadas entre si e, através de um condensador de cerâmica (por exemplo, de 1 nF, 1500 V), com o potencial da terra. As correntes de compensação de potencial de baixa frequência são então suprimidas, sendo, porém, mantida a proteção contra sinais de interferência de alta frequência.

No caso de aplicações em áreas com perigo de explosão, a capacitância total do cabo e de todos condensadores não pode ultrapassar 10 nF.

No caso de aplicações em áreas com perigo de explosão, devem ser respeitados os respectivos regulamentos de instalação. Deve-se assegurar especialmente que não haja fluxo de corrente de compensação de potencial pela blindagem do cabo. Isso pode ser atingido através da utilização de um condensador para o aterramento em ambos os lados (vide descrição acima) ou através de uma compensação de potencial adicional.

5.2 Passos para a conexão

Proceda da seguinte maneira:

- 1. Desaparafuse a tampa da caixa
- Remova um módulo de visualização e configuração eventualmente existente. Para tal, gire-o para a esquerda
- 3. Soltar a porca de capa do prensa-cabo e remover o bujão
- Decape o cabo de ligação em aprox. 10 cm (4 in) e as extremidades dos fios em aprox. 1 cm (0.4 in)
- 5. Introduza o cabo no sensor através do prensa-cabo
- Levante a alavanca de abertura dos terminais com uma chave de fenda (vide figura a seguir)
- Conecte as extremidades dos fios nos terminais livres conforme o esquema de ligações

Fig. 16: Passos 6 e 7 do procedimento de conexão

- 8. Pressione a alavanca de abertura dos bornes para baixo. Ouvese quando a mola do borne fecha.
- Controlar se os cabos estão corretamente fixados nos bornes, puxando-os levemente
- Conectar a blindagem no terminal interno de aterramento.
 Conectar o terminal externo de aterramento à compensação de potencial.
- Apertar a porca de capa do prensa-cabo, sendo que o anel de vedação tem que abraçar completamente o cabo
- 12. Aparafusar a tampa da caixa

Com isso, a conexão elétrica foi concluída.

5.3 Esquema de ligações da caixa de uma câmara

As figuras a seguir valem tanto para o modelo não-Ex como para o modelo Ex ia.

Vista geral da caixa

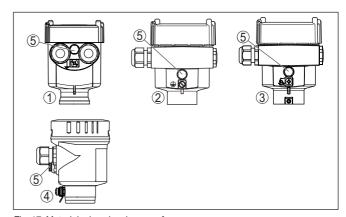


Fig. 17: Materiais da caixa de uma câmara

- 1 Plástico
- 2 Alumínio
- 3 Aço inoxidável (fundição fina)
- 4 Aço inoxidável (eletropolido)
- 5 Elemento de filtragem para todos os tipos de material. Bujões no modelo IP66/IP68 (1 bar) para alumínio e aço inoxidável

Compartimento do sistema eletrônico e de conexão

Fig. 18: Compartimento do sistema eletrônico e de conexões - Caixa de uma câmara

- 1 Bornes para a conexão do Foundation Fieldbus
- 2 Interruptor de simulação ("on" = operação com liberação de simulação)
- 3 Contatos de mola para módulo de visualização e configuração
- 4 Interface para unidade externa de visualização e configuração
- 5 Terminais de aterramento para a conexão da blindagem do cabo

Esquema de ligações

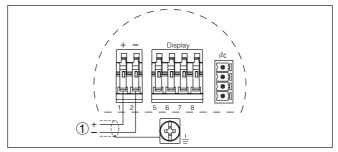


Fig. 19: Esquema de ligações - Caixa de uma câmara

1 Alimentação de tensão, saída de sinal

5.4 Esquema de ligações da caixa de duas câmaras

As figuras a seguir valem tanto para o modelo não-Ex como para o modelo Ex ia.

Vista geral da caixa

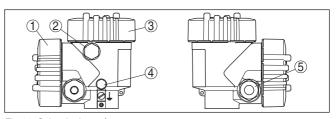


Fig. 20: Caixa de duas câmaras

- 1 Tampa da caixa compartimento de conexão
- 2 Bujão ou M12 x 1 conector para VEGADIS 81 (opcional)
- 3 Tampa do compartimento do sistema eletrônico
- 4 Elemento de filtragem para compensação da pressão de ar
- 5 Prensa-cabo

Compartimento do sistema eletrônico

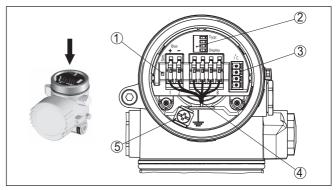


Fig. 21: Compartimento do sistema eletrônico - Caixa de duas câmaras

- 1 Interruptor de simulação ("on" = operação com liberação de simulação)
- 2 Contatos de mola para módulo de visualização e configuração
- 3 interface para Service
- 4 Cabo de ligação interna com o compartimento de conexão
- 5 Terminais de aterramento para a conexão da blindagem do cabo

Compartimento de conexões

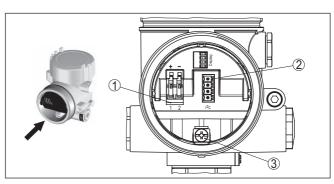


Fig. 22: Compartimento de conexão - Caixa de duas câmaras

- 1 Terminais de mola para a alimentação de tensão
- 2 Conector de encaixe para assistência (interface l²C)
- 3 Terminais de aterramento para a conexão da blindagem do cabo

Esquema de ligações

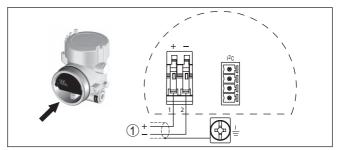


Fig. 23: Esquema de ligações - Caixa de duas câmaras

1 Alimentação de tensão, saída de sinal

5.5 Esquema de ligações - Modelo IP66/IP68 (1 bar)

Atribuição dos fios cabo de ligação

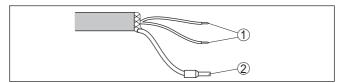


Fig. 24: Atribuição dos fios cabo de ligação

- 1 Marrom (+) e azul (-) para a alimentação de tensão ou para o sistema de avaliação
- 2 Blindagem

5.6 Fase de inicialização

Fase de inicialização

Após a ligação do VEGASON 61 à alimentação de tensão ou após o retorno da tensão, o aparelho executa primeiro um auto teste, que dura aproximadamente 30 segundos. São executados nesse teste os seguintes passos:

- Teste interno do sistema eletrônico
- Indicação do tipo de aparelho, da versão do firmware e do TAG (designação) do sensor
- O byte de status passa brevemente para Falha

Em seguida, é mostrado o valor atualmente medido e o sinal digital de saída correspondente é emitido pelo cabo.²⁾

²⁾ Os valores correspondem ao nível de enchimento atual e aos ajustes já efetuados, por exemplo, à calibração feita na fábrica.

6 Colocação em funcionamento com o módulo de visualização e configuração PLICSCOM

Colocar o módulo de visualização e configuração

Montar/desmontar o módulo de visualização e configuração O módulo de visualização e configuração pode ser a qualquer tempo colocado no sensor ou novamente removido. Não é necessário cortar a alimentação de tensão.

Proceda da seguinte maneira:

- 1. Desaparafuse a tampa da caixa
- Colocar o módulo de visualização e configuração no sistema eletrônico, na posição desejada (pode-se escolher entre quatro posições deslocadas em 90°) e girá-lo para a direita até encaixar.
- 3. Aparafuse firmemente a tampa da caixa com visor

A desmontagem ocorre de forma análoga, no sentido inverso.

O módulo de visualização e configuração é alimentado pelo sensor. Uma outra alimentação não é necessária.

Fig. 25: Colocar o módulo de visualização e configuração na caixa de uma câmara

Nota:

Caso se deseje equipar o dispositivo com um módulo de visualização e configuração para a indicação contínua do valor de medição, é necessária uma tampa mais alta com visor.

6.2 Sistema de configuração

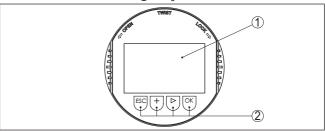


Fig. 26: Elementos de visualização e configuração

- 1 Display LC
- 2 Teclas de configuração

Funções das teclas

Tecla [OK]:

- Passar para a lista de menus
- Confirmar o menu selecionado
- Edição de parâmetros
- Salvar valor

• Tecla *[->]*:

- Mudar a representação do valor de medição
- Selecionar item na lista
- Selecionar opções do menu na Colocação rápida em funcionamento
- Selecionar a posição a ser editada

Tecla [+]:

- Alterar o valor de um parâmetro

Tecla [ESC]:

- Cancelar a entrada
- Voltar para o menu superior

Sistema de configuração - teclas diretamente

O aparelho é configurado pelas quatro teclas do módulo de visualização e configuração. No display LC são mostradas opções do menu. A representação anterior mostra a função de cada tecla.

Funções de tempo

Apertando uma vez as teclas [+] e [->], o valor editado ou o cursor é alterado em uma casa. Se elas forem acionadas por mais de 1 s, a alteração ocorre de forma contínua.

Se as teclas **[OK]** e **[ESC]** forem apertadas simultaneamente por mais de 5 s, isso provoca um retorno ao menu básico. O idioma do menu é comutado para "*Inglês*".

Aproximadamente 60 minutos após o último acionamento de uma tecla, o display volta automaticamente para a exibição do valor de medição. Os valores ainda não confirmados com **[OK]** são perdidos.

6.3 Passos para a colocação em funcionamento

Ajuste de parâmetros

Pelo fato de um sensor de radar ser um instrumento de medição de distância, ele mede a distância do sensor até a superfície do produto.

Para exibir a altura de enchimento propriamente dita, é necessário atribuir uma altura percentual à distância medida.

A partir desses dados é então calculada a altura de enchimento propriamente dita. Ao mesmo tempo, a faixa de trabalho do sensor é limitada do máximo para a faixa necessária.

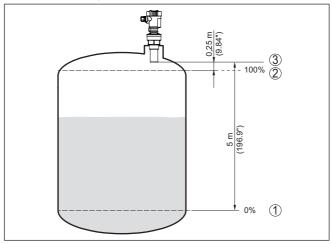
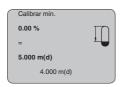


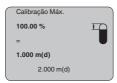
Fig. 27: Exemplo de parametrização Calibração Mín./Máx.

- 1 Nível de enchimento mín. = distância de medição (a depender do sensor)
- 2 Nível de enchimento máx. = distância de medição mín. (valor final da distância de bloqueio, a depender do sensor)
- 3 Nível de referência

O nível de enchimento atual não é relevante nessa calibração. O ajuste dos níveis mínimo e máximo é sempre efetuado sem alteração do nível atual do produto. Deste modo, esses ajustes já podem ser realizados de antemão, sem que o aparelho tenha que ser montado.


Ajuste básico - calibração Proceda da seguinte maneira: mín.

1. Passar da indicação de valores de medição para o menu principal através de [OK].


2. Selecione a opção "Ajuste básico" através de [->] e confirme com [OK]. É então mostrada a opção "Calibrar Mín.".

- Preparar a edição do valor percentual com [OK] e colocar o cursor na posição desejada através de [->]. Ajustar o valor percentual com [+] e salvá-lo com [OK]. O cursor salta então para o valor da distância.
- Introduzir para o reservatório vazio o valor da distância em metros correspondente ao valor percentual (por exemplo, a distância do sensor para o fundo do reservatório).
- Salvar os ajustes através de [OK] e passar através de [->] para a calibração de Máx.

Ajuste básico - Calibração máx. Proceda da seguinte maneira:

- Preparar a edição do valor percentual com [OK] e colocar o cursor na posição desejada através de [->]. Ajustar o valor percentual com [+] e salvá-lo com [OK]. O cursor salta então para o valor da distância.
- Introduzir para o reservatório cheio o valor da distância em metros correspondente ao valor percentual. Observar que o nível máximo de enchimento tem que se encontrar abaixo da zona morta.
- Salvar os ajustes através de [OK] e passar através de [->] para a seleção do produto.

Ajuste básico - produto

Cada produto apresenta um comportamento individual de reflexão. Líquidos apresentam fatores de interferência causados por uma superfície inquieta do produto ou pela formação de espuma. No caso de produtos sólidos, essas interferências são causadas pela poeira, empilhamento do material e ecos adicionais provocados pela parede do reservatório. Para adequar o sensor a essas variadas condições de medição, selecionar primeiramente nesta opção do menu "Líquido" ou "Sólido".

No caso de produtos sólidos, pode-se selecionar ainda entre as opções "Pó", "Granulado/peletes" ou "Cascalho/brita".

Essa seleção adicional permite o ajuste ideal do sensor ao produto e à segurança de medição é aumentada significativamente, principalmente no caso de material com baixa propriedade de reflexão.

Introduza os parâmetros desejados através das respectivas teclas. Salve os ajustes e passe para o próximo ponto do menu com a tecla [->].

Ajuste básico - Forma do reservatório

Além do produto, a forma do reservatório também pode influenciar a medição. Para adequar o sensor a tais condições de medição, esta opção do menu oferece-lhe diversas possibilidades de ajuste, a depender de se ter selecionado produto líquido ou sólido. No caso de "Líquido", as opções são "Tanque de armazenamento", "Tubo vertical", "Reservatório aberto" ou "Reservatório com agitador". No caso de "Sólido", elas são "Silo" ou "Fosso".

Introduza os parâmetros desejados através das respectivas teclas. Salve os ajustes e passe para o próximo ponto do menu com a tecla [->].

Ajuste básico - Atenuação

Para suprimir oscilações na indicação de valores medidos, causadas, por exemplo, por movimentos da superfície do produto, pode-se ajustar uma atenuação, cujo valor tem que se encontrar entre 0 e 999 segundos. Queira observar que com esse ajuste é aumentado também o tempo de reação de toda a medição, o que faz com que o sensor reaja com retardo a alterações rápidas dos valores de medição. Normalmente, o ajuste de um tempo de apenas alguns segundos é suficiente para equilibrar a indicação dos valores de medição.

Introduza os parâmetros desejados através das respectivas teclas. Salve os ajustes e passe para o próximo ponto do menu com a tecla [->].

Ajuste básico - Curva de linearização

Uma linearização é necessária em todos os reservatórios, cujo volume não aumenta de forma linear com o nível de enchimento, por exemplo, em tanques redondos deitados ou tanques esféricos, e se for desejada a exibição ou a transmissão do volume. Para tais reservatórios, foram guardadas curvas de linearização, que indicam a relação entre nível de enchimento percentual e o volume do reservatório. Através da ativação da curva adequada, o volume percentual do reservatório é mostrado corretamente. Caso o volume não deva ser exibido como valor percentual, mas, por exemplo, em litro ou

quilograma, pode ser ajustada adicionalmente uma escalação na opção "Display".

Introduza os parâmetros desejados através das respectivas teclas. Salve os ajustes e passe para o próximo ponto do menu com a tecla [->].

Área de menu Display

Display - Valor de exibição

Os sensores de radar, microondas guiadas e ultra-som fornecem os seguintes valores de medição:

- SV1 (Secondary Value 1): valor percentual após a calibração
- SV2 (Secondary Value 2): valor da distância antes da calibração
- PV (Primary Value): valor percentual linearizado
- AI FB1 (Out)

No menu "Display", define-se qual desses valores deve ser exibido no display.

Display - Iluminação

A iluminação de fundo opcional de fábrica pode ser ativada pelo menu de configuração. Essa função depende do valor da tensão de alimentação (vide "Dados técnicos/Alimentação de tensão").

Para manter o funcionamento do dispositivo, a iluminação é desligada se a alimentação de tensão não for suficiente.

No ajuste de fábrica, a iluminação está desligada.

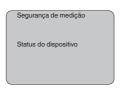
Diagnóstico - Indicador de valores de pico

No sensor são salvos os respectivos valores de medição mínimo e máximo. Os valores são exibidos na opção do menu "Indicador de valores de pico".

- distância mín. e máx. em m(d)
- temperatura mín. e máx.

Diagnóstico - Segurança de medição

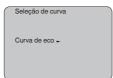
Em sensores de nível de enchimento que trabalham sem contato com o produto, a medição pode ser influenciada por condições do processo. Nesta opção, a segurança de medição do eco do nível de enchimento é exibida como valor dB. A segurança de medição é a intensidade do sinal menos as interferências. Quanto maior for o valor, mais segura será a medição. Numa medição correta, esses valores são > 10 dB.


Diagnóstico - Status do aparelho

Nesta opção do menu é mostrado o status do aparelho. Se o sensor não reconhecer nenhum erro, é exibido "OK". Se for detectado um erro, pisca uma mensagem de erro específica do sensor, por exemplo, "E013". O erro é mostrado também como texto claro, como, por exemplo, "Não há valor de medição disponível".

Informação:

A mensagem de erro e o texto são mostrados na exibição dos valores de medição.


Diagnóstico - Seleção de curva

Nos sensores de ultrassom, a "**Curva de eco** " mostra a intensidade do sinal dos ecos na faixa de medição. A unidade da intensidade do sinal é "dB". A intensidade do sinal permite uma avaliação da qualidade da medição.

A "Curva de ecos falsa" mostra os ecos falsos salvos (vide menu "Serviço") do reservatório vazio com intensidade do sinal em "dB" na faixa de medição.

Quando se inicia uma "**Curva de tendência**", são gravados, a depender do sensor, até 3000 valores de medição, que podem ser em seguida representados num eixo de tempo. São apagados os valores de medição mais antigos.

Na opção "Seleção de curva", é selecionada a respectiva curva.

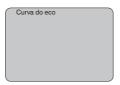
i

Informação:

No ajuste de fábrica, a gravação de tendência não está ativada. Ela tem que ser iniciada pelo usuário através da opção "*Iniciar curva de tendência*".

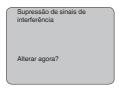
Diagnóstico - Representação de curva

Uma comparação de curvas de eco e de ecos falsos fornece informações mais exatas sobre a segurança da medição. A curva selecionada é constantemente atualizada. Através da tecla *[OK]*, é aberto um submenu com funções de zoom.


Na "Curva de eco e ecos falsos" estão disponíveis:

- "Zoom X": função de lupa para a distância de medição
- "Zoom Y": ampliação de 1, 2, 5 e 10 vezes do sinal em "dB"
- "Unzoom": retorna a representação para faixa nominal de medição com ampliação simples

Na "Curva de tendência" estão disponíveis:


- "Zoom X": resolução
 - 1 minuto
 - 1 hora
 - 1 dia
- "Parar/iniciar": cancela a gravação atual ou inicia uma nova
- "Unzoom": retorno da resolução para minutos

O tempo de gravação foi ajustado pela fábrica em 1 minuto. Esse tempo pode ser ajustado com o software de configuração PACTware em 1 hora ou um dia.

Assistência técnica - Supressão de sinais falsos

Luvas altas ou anteparos montados no reservatório, como reforços, agitadores, incrustações ou costuras de solda na parede causam interferências na reflexão que podem prejudicar a medição. Uma supressão de sinais falsos detecta, marca e salva esses sinais de interferência para que não mais sejam considerados na medição do nível de enchimento. Ela deve ser efetuada com um reservatório com nível baixo, a fim de permitir a detecção de todas as reflexões falsas.

Proceda da seguinte maneira:

 Passar da indicação de valores de medição para o menu principal através de [OK].

- Selecionar a opção "Manutenção" através de [->] e confirmar com [OK]. É mostrado então a opção "Supressão de sinal falso".
- Confirmar "Supressão de sinal falso alterar agora" com [OK] e selecionar no menu subordinado a opção "Criar novo". Introduzir a distância real entre o sensor e a superfície do produto. Todos os sinais falsos existentes nessa área serão detectados pelo sensor e salvos após a confirmação com [OK].

Nota:

Ĭ

Controlar distância para a superfície do produto, pois um ajuste errado (muito grande) do nível atual pode ser salvo como sinal falso. Isso faria com que o nível nessa posição não seja mais medido.

Assistência técnica -Ajustes avançados

A opção do menu "Ajustes avançados" oferece a possibilidade de otimizar o VEGASON 61 para aplicações, nas quais o nível de enchimento é alterado de forma demasiadamente rápida. Para tal, selecionar a função "alteração rápida do nível de enchimento > 1 m/min.".

Nota:

Na função "alteração rápida do nível de enchimento > 1 m/min.", a formação do valor médio da avaliação de sinais é fortemente reduzida. Portanto, reflexões falsas causadas por agitadores ou anteparos montados no reservatório podem provocar oscilações do valor de medição. É recomendado efetuar uma supressão de ecos falsos.

Serviço/Simulação

Nesta opção, simula-se quaisquer valores de nível de enchimento e de pressão através da saída de corrente. Isso permite testar o caminho do sinal, por exemplo, através de aparelhos de leitura conectados ou da placa de entrada do sistema central de controle.

Podem ser selecionadas as seguintes grandezas de simulação:

- Por cento
- Corrente
- Pressão (em transmissores de pressão)
- Distância (em radar e radar guiado (TDR)))

Em sensores Profibus PA, a seleção do valor simulado ocorre através de "Channel" no menu "Ajustes básicos".

Como iniciar uma simulação:

- Apertar [OK]
- Selecionar a grandeza de simulação desejada com [->] e confirmar com [OK]
- 3. Ajustar o valor numérico desejado através de [+] e [->].
- 4. Apertar [OK]

VEGA

A simulação é então executada, sendo emitida uma corrente no caso de 4 ... 20 mA/HART e, no caso de Profibus PA ou Foundation Fieldbus, é emitido um valor digital.

Como cancelar a simulação:

→ Apertar [ESC]

I

Informação:

A simulação é terminada automaticamente 10 minutos após o último acionamento de uma tecla.

Serviço - Reset

Ajuste básico

Se for efetuado um "Reset", o sensor repõe os valores das opções a seguir nos valores de reset (vide tabela):3)

Função	Valor de reset		
Calibração Máx.	Valor final zona morta em m(d)4)		
Calibrar mín.	Fim da faixa de medição em m(d)5)		
Produto	Líquido		
Forma do reservatório	não conhecido		
Atenuação	0 s		
linearização	Linear		
TAG do sensor	Sensor		
Valor exibido	Al-Out		
Unidade de calibração	m(d)		

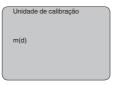
Os valores das opções a seguir *não* são repassados através de um "**reset** para os valores de reset (vide tabela):

Função	Valor de reset	
Idioma	Nenhum reset	

Ajuste de fábrica

Como o ajuste básico. Além disso, os parâmetros especiais são repostos com os valores default. 6)

Indicador de valor de pico


Os valores Mín. e Máx. de distância e de temperatura são repostos no valor atual.

- 3) Ajuste básico específico do sensor.
- 4) A depender do tipo de sensor, vide "Dados técnicos".
- 5) A depender do tipo de sensor, vide "Dados técnicos".
- ⁶⁾ Parâmetros especiais são parâmetros que são ajustados de forma específica para o cliente, no nível de assistência técnica, através do software de configuração PACTware.

Assistência técnica - Unidade de calibração

Nesta opção seleciona-se a unidade interna de cálculo do sensor.

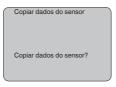
Assistência técnica - Idioma

O sensor é ajustado pela fábrica com o idioma encomendado. Esta opção permite a alteração do idioma. Estão disponíveis, por exemplo, a partir da versão 3.50 do software os seguintes idiomas:

- Deutsch
- English
- Français
- Espanől
- Pycckuu
- Italiano
- Netherlands
- Japanese
- Chinese

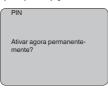
Copiar dados do sensor

Esta função permite a leitura de dados de parametrização ou o seu armazenamento no sensor através do módulo de visualização e configuração. Uma descrição da função pode ser lida no manual "Módulo de visualização e configuração".


Os seguintes dados são lidos ou escritos através dessa função:

- Representação do valor de medição
- Calibração
- Produto
- Forma do reservatório
- Atenuação
- Curva de linearização
- TAG do sensor
- Valor exibido
- Unidade de calibração
- Idioma

Os seguintes dados relevantes para a segurança **não** são lidos ou escritos:


PIN

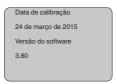
Serviço - PIN

Nesta opção, o PIN é ativado/desativado de forma permanente. Com a introdução de um PIN de 4 algarismos, os dados do sensor fica protegido contra acesso não-autorizado e contra alterações acidentais. Se o PIN estiver ativado de forma permanente, ele pode ser desativado temporariamente (por aproximadamente 60 minutos) em qualquer opção do menu. O PIN ajustado pela fábrica é 0000.

Se o PIN estiver ativado, só são permitidas as seguintes funções:

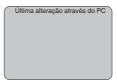
- Selecionar opções dos menus e visualizar dados
- Passar os dados do sensor para o módulo de visualização e configuração

Área de manu Informação


Info

Neste menu pode-se ler as informações mais importantes sobre o sensor:

- Tipo de dispositivo
- Número de série: número de 8 algarismos, por exemplo, 12345678



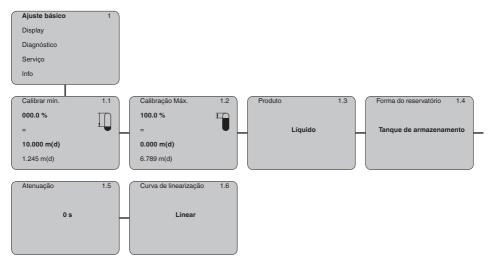
- Data de calibração: data da calibração de fábrica
- Versão do software: versão do software do sensor

 Última alteração via PC: data da última alteração de parâmetros do sensor por um PC

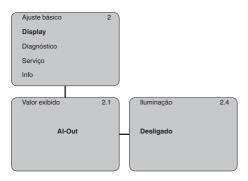
- Device-ID
- TAG do sensor

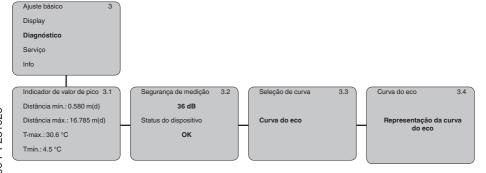
 Características do sensor, por exemplo, homologação, conexão do processo, vedação, célula de medição, faixa de medição, módulo eletrônico, caixa, entrada do cabo, conector, comprimento do cabo, etc.

6.4 Plano de menus

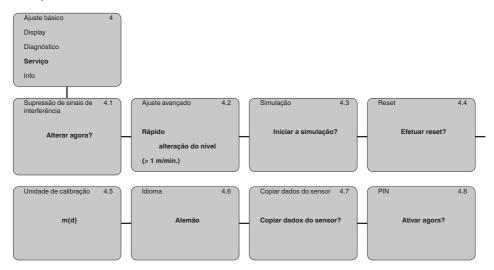

ĭ

Informação:


A depender do equipamento e da aplicação, as janelas de menu mostradas em cor clara não estão sempre disponíveis.


Ajuste básico

Display



Diagnóstico

Serviço

Info

Armazenamento dos dados de parametrização

Em papel

Recomendamos anotar os dados ajustados, por exemplo, no presente manual, guardando-os bem em seguida. Assim eles estarão à disposição para uso posterior ou para fins de manutenção.

No módulo de visualização e configuração Se o aparelho estiver equipado com um módulo de visualização e configuração, os dados de parametrização podem ser salvos nele. Os dados são salvos de forma permanente e são mantidos mesmo se ocorrer uma falha na alimentação do sensor. O procedimento correto é descrito na opção do menu "Copiar dados do sensor".

7 Colocação em funcionamento com o PACTware

7.1 Conectar o PC via VEGACONNECT

Através do adaptador de interface diretamente no sensor

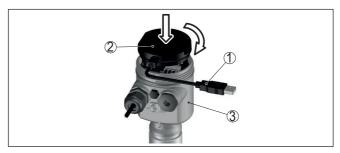


Fig. 28: Conexão do PC diretamente no sensor via adaptador de interface

- 1 Cabo USB para o PC
- 2 Adaptador de interface VEGACONNECT
- 3 Sensor

Por meio de adaptador de interface externo

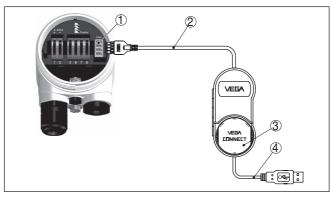


Fig. 29: Conexão via adaptador de interface VEGACONNECT externo

- 1 Interface I²C-Bus (Com.) no sensor
- 2 Cabo de ligação I²C do VEGACONNECT
- 3 Adaptador de interface VEGACONNECT
- 4 Cabo USB para o PC

Através de um adaptador de interface e HART

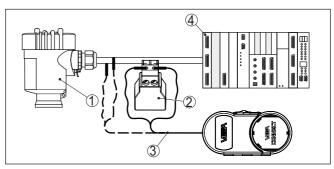


Fig. 30: Conexão do PC à linha de sinais via HART

- 1 Sensor
- 2 Resistência HART 250 Ω (opcional, a depender do tipo de avaliação)
- 3 Cabo de ligação com pinos conectores de 2 mm e terminais
- 4 Sistema de avaliação/CLP/alimentação de tensão

ĭ

Nota:

No caso de fontes de alimentação com resistência HART integrada (resistência interna de aproximadamente $250~\Omega$), não é necessária uma resistência externa adicional. Isso vale, por exemplo, para os dispositivos VEGADIS 381 e VEGAMET 391. Separadores de alimentação Ex comuns também apresentam normalmente uma resistência limitadora de corrente alta o suficiente. Nesses casos, o adaptador de interface 4 pode ser ligado em paralelo à linha de 4 ... 20 mA (mostrado na figura acima de forma tracejada).

7.2 Ajuste de parâmetros

Pré-requisitos

Para o ajuste de parâmetros do aparelho via PC com Windows, é necessário o software de configuração PACTware com um driver (DTM) apropriado para o aparelho, que atenda o padrão FDT. A versão atual do PACTware e todos os DTMs disponíveis são agrupados em uma DTM Collection. Os DTMs podem ainda ser integrados em outros aplicativos com padrão FDT.

Nota:

Para garantir o suporte de todas as funções do aparelho, deveria ser sempre utilizada a versão mais atual da Coleção DTM. Nem sempre estão disponíveis todas as funções descritas em versões mais antigas do firmware. Para muitos aparelhos, é possível carregar a mais nova versão do software através de nossa homepage. Também está à disposição na internet uma descrição da atualização (update).

Os demais procedimentos de colocação em funcionamento são descritos no manual de instruções "Coleção DTM/PACTwareTM" fornecido em todas as coleções de DTMs e que pode ser baixado na internet. Descrições mais detalhadas podem ser lidas na ajuda on-line do PACTware e dos DTMs da VEGA.

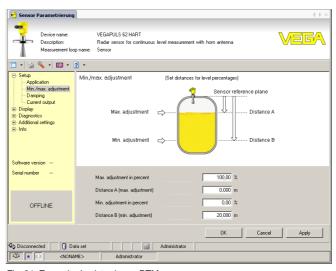


Fig. 31: Exemplo da vista de um DTM

7.3 Salvar dados de parametrização

Recomendamos documentar ou salvar os dados dos parâmetros através do PACTware. Assim eles estarão à disposição para uso posterior ou para fins de manutenção.

8 Colocação em funcionamento com outros sistemas

8.1 Programas de configuração DD

Estão disponíveis para o aparelho descrições na forma de Enhanced Device Description (EDD) para programas de configuração DD, como, por exemplo, AMSTM e PDM.

Os arquivos podem ser baixados em <u>www.vega.com/downloads</u> e "Software"

9 Manutenção e eliminação de falhas

9.1 Conservar

Manutenção

Se o aparelho for utilizado conforme a finalidade, não é necessária nenhuma manutenção especial na operação normal.

limpeza

A limpeza contribui para que a placa de características e marcas no aparelho figuem visíveis.

É necessário observar o seguinte:

- Utilize apenas produtos de limpeza que n\u00e3o sejam agressivos para a caixa, a placa de caracter\u00edsticas e as veda\u00e7\u00f3es.
- Só utilize métodos de limpeza que seja de acordo com o grau de proteção do aparelho.

9.2 Eliminar falhas

Comportamento em caso de falhas

É de responsabilidade do proprietário do equipamento tomar as devidas medidas para a eliminação de falhas surgidas.

Causas de falhas

O aparelho garante um funcionamento altamente seguro. Porém, podem ocorrer falhas durante sua operação. Essas falhas podem por ex. apresentar as seguintes causas:

- Sensor
- Processo
- Alimentação de tensão
- Avaliação de sinal

Eliminação de falhas

As primeiras medidas a serem tomadas:

- Avaliação de mensagens de erro
- Verificação do sinal de saída
- Tratamento de erros de medição

Outras possibilidades de diagnóstico mais abrangentes são oferecidas por um smartphone/tablete com o app de configuração ou um PC/Notebook com o software PACTware e o DTM adequado. Em muitos casos, isso permite identificar as causas e eliminar as falhas.

Controlar o Foundation Fieldbus

A tabela a seguir descreve possíveis erros e auxilia na sua eliminacão:

Erro	Causa	Eliminação do erro
Na conexão de mais um aparelho, o segmento H1 é suprimido	Corrente máxima de ali- mentação do acoplador de segmento ultrapassada	Medir o consumo de corrente, reduzir o segmento
O valor medido mostrado no módulo de visualização e configuração não coinci- de com o valor no CLP	Na opção do menu " <i>Dis-</i> play - <i>Valor exibido</i> ", não foi ajustado " <i>Al-Out</i> "	Controlar e, se necessário, corrigir os valores

Erro	Causa	Eliminação do erro		
O aparelho não aparece no estabelecimento da co-	Inversão de polaridade do cabo Profibus DP	Controlar o cabo e, se necessário, corrigi-lo		
nexão	Terminação incorreta	Controlar a terminação no início e no fim do bus. Se necessário, efetuar a terminação conforme a especi- ficação		
	parelho não conectado no segmento	Controlar e, se necessário, corrigir		

Em aplicações em áreas com perigo de explosão devem ser respeitadas as regras de interligação de circuitos com proteção intrínseca.

Mensagens de erro pelo módulo de visualização e configuração

Erro	Causa	Eliminação do erro		
E013	Não existe valor de medição	Sensor na fase de inicialização		
		O sensor não encontra nenhum eco, por exemplo, devido à montagem incorreta ou ajuste errado dos parâmetros		
E017	Margem de calibração muito pequena	Repetir a calibração, aumentando a distância entre os valores mínimo e máximo		
E036	Não há software executável para o sensor	Atualizar o software ou enviar o aparelho para ser consertado		
E041	Erro de hardware, defeito no sistema eletrônico	Substituir o aparelho ou enviá-lo para ser consertado		

Comportamento após a eliminação de uma falha

A depender da causa da falha e das medidas tomadas, se necessário, executar novamente os passos descritos no capítulo "Colocar em funcionamento" ou controlar se está plausível e completo.

Hotline da assistência técnica - 24 horas

Caso essas medidas não tenham êxito, ligue, em casos urgentes, para a hotline da assistência técnica da VEGA - Tel. +49 1805 858550.

A hotline está disponível também fora no horário normal de atendimento, 7 dias por semana, 24 horas por dia.

Pelo fato de oferecermos esse serviço para todo o mundo, o atendimento é realizado no idioma inglês. O serviço é gratuito. O único custo são as tarifas telefônicas.

9.3 Trocar o módulo elétrônico

Em caso de defeito, o módulo eletrônico pode ser trocado pelo usuário.

Em aplicações Ex, só podem ser utilizados um aparelho e um módulo eletrônico com a respectiva homologação Ex.

Caso não se possua nenhum módulo eletrônico, ele pode ser encomendado junto ao representante da VEGA.

Número de série do sensor

O novo módulo eletrônico tem que ser carregado com os ajustes do sensor. Para tal há as seguintes possibilidades:

- Na fábrica pela VEGA
- No local, pelo usuário

Em ambos os casos, é necessário indicar o número de série do sensor. Esse número de série pode ser consultado na placa de características do aparelho, no interior da caixa ou na nota de entrega do aparelho.

•

Informação:

Ao carregar diretamente no local, os dados do pedido têm que ser anteriormente baixados da internet (vide manual "Módulo eletrônico").

Atribuição

Os módulos eletrônicos são configurados de forma específica para o respectivo sensor, diferenciando-se também na saída de sinais e na alimentação.

9.4 Atualização do software

Para atualizar o software do aparelho, são necessários os seguintes componentes:

- Dispositivo
- Alimentação de tensão
- Adaptador de interface VEGACONNECT
- PC com PACTware
- Software atual do aparelho como arquivo

O software do aparelho atual bem como informações detalhadas para o procedimento encontram-se na área de downloads na nossa homepage: www.vega.com.

As informações para a instalação encontram-se no arquivo baixado.

Cuidado:

Aparelhos com homologações podem estar vinculados a determinadas versões do software. Ao atualizar o software, assegure-se, portanto, de que a homologação não perderá sua validade.

Informações detalhadas encontram-se na área de downloads na homepage<u>www.vega.com</u>.

9.5 Procedimento para conserto

Em nossa homepage, você encontra informações detalhadas sobre como proceder, caso necessite de um reparo.

Gere uma folha de retorno com os dados do seu dispositivo. Isso agiliza o reparo, pois dispensa consultas posteriores desses dados.

Você precisa de:

- O número de série do dispositivo
- Uma breve descrição do problema
- Informações sobre o produto medido

Imprimir o Formulário de retorno gerado.

Limpe o aparelho e empacote-o de forma segura.

Envie o Formulário de retorno impresso e eventualmente uma ficha técnica de segurança juntamente com o dispositivo.

Você encontra o endereço para o envio no Formulário de retorno gerado.

10 Desmontagem

10.1 Passos de desmontagem

Advertência:

Ao desmontar, ter cuidado com condições perigosas do processo, como, por exemplo, pressão no reservatório ou tubo, altas temperaturas, produtos tóxicos ou agressivos, etc.

Leia os capítulos "Montagem" e "Conectar à alimentação de tensão" e execute os passos neles descritos de forma análoga, no sentido inverso.

10.2 Eliminação de resíduos

Entregue o aparelho à uma empresa especializada em reciclagem e não use para isso os postos de coleta municipais.

Remova antes pilhas eventualmente existente caso seja possível retirá-las do aparelho. Devem passar por uma detecção separada.

Caso no aparelho a ser eliminado tenham sido salvos dados pessoais, apague tais dados antes de eliminar o aparelho

Caso não tenha a possibilidade de eliminar corretamente o aparelho antigo, fale conosco sobre uma devolução para a eliminação.

11 Anexo

11.1 Dados técnicos

Instrução para aparelhos homologados

Para aparelhos homologados (por ex. com homologação Ex) valem os dados técnicos conforme as respectivas instruções de segurança fornecidas. A depender por ex. das condições do processo ou da alimentação de tensão, eles podem divergir dos dados aqui apresentados.

Todos os documentos de homologação podem ser baixados em nosso site.

	os		

Materiais, com contato com o produto

Transdutor acústico
 PVDF

- Vedação transdutor acústico/conexão EPDM, FKM

do processo

conexão de processo G1½,
 PVDF

DIN 3852-A-B

- conexão de processo 1½ NPT, AS- PVDF

ME B1.20.1

Materiais, sem contato com o produto

Caixa
 Plástico PBT (poliéster), alumínio fundido sob pressão

revestido a pó, 316L

Vedação da tampa da caixa
 Silicone SI 850 R

- Visor tampa da caixa Policarbonato (listado conforme UL-746-C), vidro⁷⁾

- Terminal de aterramento 316Ti/316L

Prensa-cabo
 PA, aço inoxidável, bronze

Vedação do prensa-caboBujão, prensa-caboPA

Peso 1,8 ... 4 kg (4 ... 8.8 lbs), a depender da conexão do

processo e da caixa 25 Nm (18.44 lbf ft)

Torque máx. de aperto das luvas rosca-

das

Grand	1070	40	On	tra	40
Grand	IEZa.	ue	en	uа	ua

Grandeza de medição	Distância entre a borda inferior do transdutor acústico e		
	a superfície do produto		

Faixa de medição

Líquidos até 5 m (16.4 ft)
Produtos sólidos até 2 m (6.562 ft)
distância de bloqueio 0,25 m (0.82 ft)

Grandeza de saída

Saída

- Sinal sinal de saída digital, protocolo Foundation Fieldbus

⁷⁾ Vidro (em caixa em alumínio fundição de precisão em alumínio e aço inoxidável)

- Camada física conforme IEC 61158-2

Tempo de ciclo mín. 1 s (a depender dos parâmetros ajustados)

- Atenuação (63 % da grandeza de 0 ... 999 s, ajustável

entrada)

Recomendação NAMUR atendida NE 43

Channel Numbers

Channel 1
 Channel 2
 Channel 3
 Secondary value 1
 Channel 3
 Secondary value 2
 Taxa de transmissão
 Valor de corrente
 MA, ±0.5 mA
 Resolução da medição digital
 Primary value
 Secondary value 2
 31,25 Kbit/s
 Valor de corrente
 10 mA, ±0.5 mA
 > 1 mm (0.039 in)

Erro de medição

Erro de medição⁸⁾ ≤ 4 mm (distância de medição ≤ 2,0 m/6.562 ft)

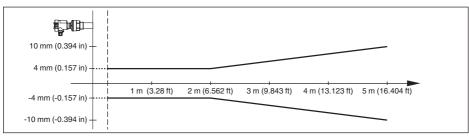


Fig. 32: Diferença na medição VEGASON 61

Condições de referência para a precisão de medição (conforme a norma DIN EN 60770-1)

Condições de referência conforme a norma DIN EN 61298-1

- Temperatura +18 ... +30 °C (+64 ... +86 °F)

- Umidade relativa do ar 45 ... 75 %

- Pressão do ar 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Outras condições de referência

- Refletor refletor ideal, por exemplo, placa metálica 2 x 2 m

(6.56 x 6.56 ft)

Reflexões falsas
 Maior sinal de falso 20 dB menor que o sinal útil

Características de medição

Frequência ultrassônica 70 kHz

Intervalo de medição > 2 s (a depender dos parâmetros ajustados)

Ângulo de deflexão para -3 dB 11°

Resposta do salto ou tempo de ajuste⁹⁾ > 3 s (a depender dos parâmetros ajustados)

⁸⁾ Incl. não-linearidade, histerese e não-repetibilidade.

⁹⁾ Tempo até a emissão correta do nível de enchimento (variação máx. de 10 %) com uma alteração do nível em saltos.

Influência da temperatura ambiente sobre o sistema eletrônico do sensor¹⁰

Coeficiente médio de temperatura do sinal zero (erro de temperatura)

0,06 %/10 K

Condições ambientais

Temperatura ambiente, de armazena-

-40 ... +80 °C (-40 ... +176 °F)

mento e transporte

Condições do processo

Pressão do processo -20 ... 200 kPa/-0,2 ... 2 bar (-2.9 ... 29 psig)

Temperatura de processo (temperatura do transdutor)

- Vedação EPDM
 -40 ... +80 °C (-40 ... +176 °F)
 - Vedação FKM
 -20 ... +80 °C (-4 ... +176 °F)

Resistência a vibrações oscilações mecânicas com 4 q e 5 ... 100 Hz¹¹⁾

Dados eletromecânicos - Modelos IP66/IP67 e IP66/IP68 (0,2 bar)

Opções do prensa-cabo

 - Entrada do cabo
 M20 x 1,5; ½ NPT

 - Prensa-cabo
 M20 x 1,5; ½ NPT

 - Bujão
 M20 x 1,5; ½ NPT

- Tampa ½ NPT

Seção transversal do fio (terminais com mola)

Fio rígido, fio flexível
 Fio com terminal
 0,2 ... 2,5 mm² (AWG 24 ... 14)
 Fio com terminal
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Dados eletromecânicos - Modelo IP66/IP68 (1 bar)

Opções do prensa-cabo

- Prensa-cabo com cabo de ligação

integrado

M20 x 1,5 (cabo: ø 5 ... 9 mm)

Entrada do cabo
 ½ NPT

- Bujão M20 x 1,5; ½ NPT

Cabo de ligação

Secão transversal do fio
 0,5 mm² (AWG n.° 20)

Resistência do fio< 0,036 Ω/m

Resistência à traçãoComprimento padrão1200 N (270 lbf)5 m (16.4 ft)

- Comprimento máximo 180 m (590.6 ft)

- Raio mínimo de curvatura 25 mm (0.984 in) a 25 °C (77 °F)

- Diâmetro aprox. 8 mm (0.315 in)

Cor - Modelo não-Ex
 Preto

¹⁰⁾ Referente à faixa nominal de medição.

¹¹⁾ Controlado segundo as diretrizes da Germanischen Lloyd, curva característica GL 2.

- Cor - Modelo Ex Azul

Módulo de visualização e configuração

Elemento de visualização Display retroiluminado

Visualização de valores de medição

Número de algarismos

Elementos de configuração

- 4 teclas [OK], [->], [+], [ESC]

Interruptor
 Bluetooth On/Off

Interface para Bluetooth

Padrão Bluetooth LEAlcance 25 m (82.02 ft)

Grau de proteção

soltoMontado na caixa sem tampaIP40

Materiais

- Caixa ABS

Visor Folha de poliésterSegurança funcional sem reação SIL

Alimentação de tensão

Tensão de operação 9 ... 32 V DC

Tensão de operação U_R com iluminação 12 ... 32 V DC

ligada

Alimentação por/quantidade máx. de 32

sensores

Medidas de proteção elétrica

Grau de proteção

Material da caixa	Modelo	Grau de proteção IP	Grau de proteção NEMA
Plástico	Uma câmara	IP66/IP67	Type 4X
	Duas câmaras	IP66/IP67	Type 4X
Alumínio	Uma câmara	IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P
	Duas câmaras	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P
Aço inoxidável (eletro- polido)	Uma câmara	IP66/IP68 (0,2 bar)	Type 6P
Aço inoxidável (fundi-	Uma câmara	IP66/IP68 (0,2 bar)	Type 6P
ção fina)		IP68 (1 bar)	Type 6P

Conexão da fonte de alimentação

Redes da categoria de sobretensão III

Altura de uso acima do nível do mar

padrão até 2000 m (6562 ft)com sobretensão conectada a mon- até 5000 m (16404 ft)

tante

Grau de poluição¹²⁾

Classe de proteção II (IEC 61010-1)

Homologações

Aparelhos com homologações podem apresentar dados técnicos divergentes, a depender do modelo.

Portanto, deve-se observar os respectivos documentos de homologação desses aparelhos, que são fornecidos juntamente com o equipamento ou que podem ser baixados na nossa homepage www.vega.com, digitando o número de série do aparelho no campo de pesquisa, e também na área geral de download.

11.2 Comunicação de aparelhos Foundation Fieldbus

A seguir, serão mostrados os detalhes específicos do aparelho requeridos. Maiores informações sobre o Foundation Fieldbus podem ser encontrada no site <u>www.fieldbus.org</u>.

Diagrama em bloco para o processamento de valores de medição

A figura a seguir mostra o bloco transdutor (TB) e o bloco funcional (FB) de forma simplificada.

²⁸⁷⁹⁰⁻PT-231026

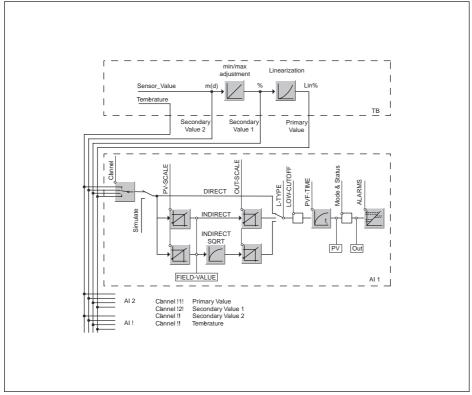


Fig. 33: Processamento de valores de medição do VEGASON 61

Diagrama de calibração

A figura a seguir mostra a função de calibração:

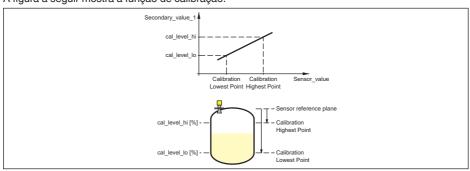


Fig. 34: Calibração VEGASON 61

Lista de parâmetros para Device revision 3.0

A lista a seguir apresenta os parâmetros mais importantes e o seu significado:

- primary_value
 - This is the process value after adjustment and Linearization with the status of the transducer block
- primary_value_unit
 - Unit code of 'Primary_value'
- secondary value 1
 - Value after min./max.-adjustment (level + level offset). Selected as input to AIFB by setting 'Channel' = 2. Unit derives from 'Secondary value 1 unit'
- secondary value 1 unit
 - Unit code of 'Secondary_value_1'
- secondary value 2
 - Sensor value + sensor offset. Selected as input to AIFB by setting 'Channel' = 3. Unit derives from 'Secondary_value_2_unit'
- secondary value 2 unit
 - Unit code of 'Secondary value 2'
- sensor_value
 - Raw sensor value, i.e. the uncalibrated measurement value from the sensor. Unit derives from 'Sensor_range.unit'
- sensor range
 - Sensor_range.unit' refers to 'Sensor_value', 'Max/Min_peak_sensor_value', 'Cal_point_hi/lo'
- simulate_primary_value
- simulate_secondary_value_1
- simulate_secondary_value_2
- Device Status
- Linearization Type
 - Possible types of linearization are: linear, user defined, cylindrical lying container, spherical container
- CURVE_POINTS_1_10
 - X and Y values for the user defined linearization curve
- CURVE POINTS 11 20
 - X and Y values for the user defined linearization curve
- CURVE POINTS 21 30
 - X and Y values for the user defined linearization curve
- CURVE POINTS 31 33
 - X and Y values for the user defined linearization curve
- CURVE_STATUS
- Result of table plausibility check
- SUB_DEVICE_NUMBER
- SENSOR ELEMENT TYPE
- display source selector
 - Selects the type of value, which is displayed on the indicating and adjustment module
- max peak sensor value
 - Holds the maximum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- min_peak_sensor_value
 - Holds the minimum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
- CAL_POINT HI
 - Min./max.-adjustment: Upper calibrated point of the sensor. It refers to 'Cal_level_hi'. The unit is defined in 'Sensor_range.unit'hi

- CAL POINT LO
 - Min./max.-adjustment: Lower calibrated point of the sensor. It refers to 'Cal_level_lo'. The unit is defined in 'Sensor range.unit'
- CAL LEVEL HI
 - Min./max.-adjustment: Level at 'Cal_point_hi'. When writing 'Cal_level_hi' and 'Cal_type' = 1
 (Online) the 'Cal_point_hi' is automatically set to the current sensor value. The unit is defined in
 'I evel_unit'
- CAL LEVEL LO
 - Min./max.-adjustment: Level at 'Cal_point_lo'. When writing 'Cal_level_lo' and 'Cal_type' = 1
 (Online), the 'Cal_point_lo' is automatically set to the current sensor value. The unit is defined
 in 'Level unit'
- CAL TYPE
 - Min./max.-adjustment: Defines type of calibration: Dry: no influence of sensor value. Online: current sensor value determines 'Cal_point_hi/lo'
- level
 - Value after min./max. adjustment
- level unit
 - Unit code of 'Level', 'Level offset', 'Cal level hi', 'Cal level lo'
- level offset
 - Offset that is added to the 'Level' value. Unit derives from 'Level unit'
- SENSOR OFFSET
 - Offset that is added to the 'Sensor_value'. Unit derives from 'Sensor_range.unit'
- end of operation range
 - Set up to suit the process conditions
- begin of operation range
 - Set up to suit the process conditions
- product_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- liquids_medium_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- solids_medium_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- liquids_vessel_type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- solids vessel type
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- fast level change
 - Set up to suit the process conditions. If Special-Parameter adjustment has been utilized this parameter cannot be written
- first_echo_factor
 - Set up to suit the process conditions
- pulse_velocity_correction
 - Set up to suit the process conditions
- echo_quality
 - Signal/Noise ratio
- empty_vessel_curve_corr_dist
 - Distance from the sensor to the product surface. Unit derives from 'Sensor_range.unit'
- empty_vessel_curve_corr_op_code

- Update, create new or delete the empty vessel curve
- sound velocity
 - Set up to suit the process conditions
- sound velocity unit
 - Unit code of 'Sound_velocity'
- Temperature
 - Process temperature. Selected as input to AIFB by setting 'Channel' = 4. Unit derives from 'Temperature.unit'
- temperature unit
 - Unit code of 'Temperature', 'Max./Min._peak_temperature_value'
- max_peak_temperature_value
 - Holds the maximum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
- min peak temperature value
 - Holds the minimum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'

11.3 Dimensões

Os desenhos aqui apresentados mostram somente uma parte das conexões do processo possíveis. Outros desenhos estão disponíveis em nosso site www.vega.com, através do configurador do VEGASON 61.

Caixa de plástico

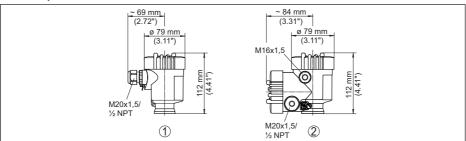


Fig. 35: Variantes da caixa com proteção IP66/IP67 (com o módulo de leitura e comando montado, a altura da caixa é aumentada em 9 mm/0,35 in)

- 1 Caixa de uma câmara de plástico
- 2 Caixa de duas câmaras de plástico

Caixa de alumínio

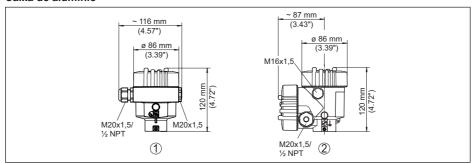


Fig. 36: Variantes da caixa com grau de proteção IP66/IP68 (0,2 bar), (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 18 mm/0.71 in)

- 1 Alumínio-uma câmara
- 2 Alumínio duas câmaras

Caixa de alumínio com tipo de proteção IP66/IP68 (1 bar)

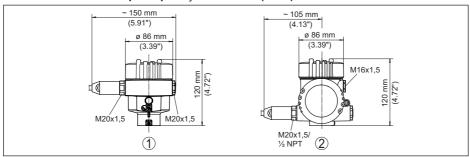


Fig. 37: Variantes da caixa com grau de proteção IP66/IP68 (1 bar) (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 18 mm/0.71 in)

- 1 Alumínio-uma câmara
- 2 Alumínio duas câmaras

Caixa de aço inoxidável

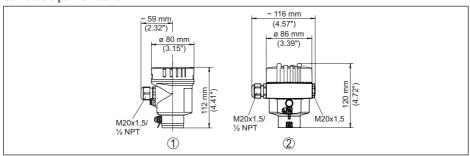


Fig. 38: Variantes da caixa com grau de proteção IP66/IP68 (0,2 bar), (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 18 mm/0.71 in)

- 1 Caixa de uma câmara de aço inoxidável (eletropolido)
- 2 Caixa de uma câmara de aço inoxidável (fundição de precisão)

Caixa de aço inoxidável com proteção IP66/IP68 (1 bar)

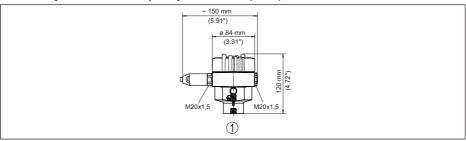


Fig. 39: Variantes da caixa com grau de proteção IP66/IP68 (1 bar) (com o módulo de visualização e configuração montado, a altura da caixa é aumentada em 18 mm/0.71 in)

1 Caixa de uma câmara de aço inoxidável (fundição de precisão)

VEGASON 61

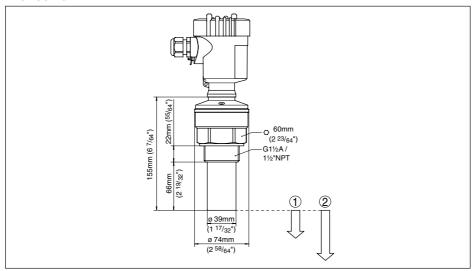


Fig. 40: VEGASON 61

- 1 Distância de bloqueio: 0,25 m (0.82 ft)
- 2 Faixa de medição: para líquidos, até 5 m (16.4 ft), para produtos sólidos, até 2 m (6.562 ft)

11.4 Proteção dos direitos comerciais

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

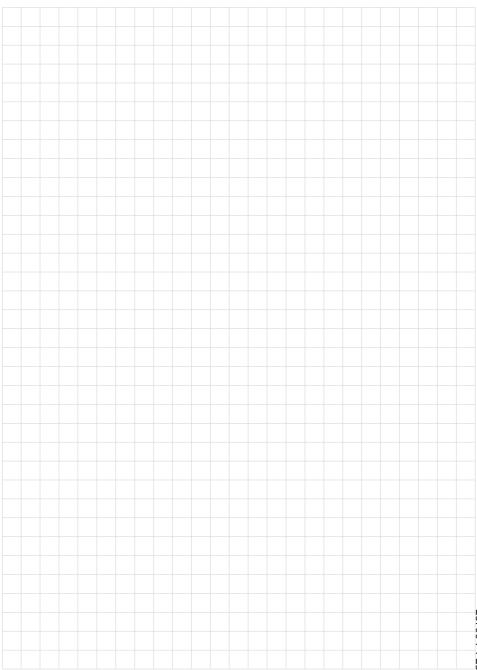
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.


VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.5 Marcas registradas

Todas as marcas e nomes de empresas citados são propriedade dos respectivos proprietários legais/autores.

Printing date:

As informações sobre o volume de fornecimento, o aplicativo, a utilização e condições operacionais correspondem aos conhecimentos disponíveis no momento da impressão.

Reservados os direitos de alteração

© VEGA Grieshaber KG, Schiltach/Germany 2023

((

28790-PT-231026