Betriebsanleitung

Radarsensor zur kontinuierlichen Füllstandmessung von Flüssigkeiten

VEGAPULS C 22

SDI-12

Document ID: 58345

Inhaltsverzeichnis

1	Zu diesem Dokument	1	
•	1.1 Funktion		
	1.2 Zielgruppe		
	1.3 Verwendete Symbolik		
2	Zu Ihrer Sicherheit		
	2.1 Autorisiertes Personal		
	2.2 Bestimmungsgemäße Verwendung		
	2.3 Warnung vor Fehlgebrauch2.4 Allgemeine Sicherheitshinweise		
	2.5 Betriebsart - Radarsignal		
3	Produktbeschreibung		
	3.1 Aufbau		
	3.2 Arbeitsweise		
	3.3 Bedienung		
	3.4 Verpackung, Transport und Lagerung		
	3.5 Zubehör		
4	Montieren	. 11	
	4.1 Allgemeine Hinweise		
	4.2 Montagevarianten		
	4.3 Montagehinweise		
	4.4 Messanordnungen - Pegel		
	4.5 Messanordnungen - Durchfluss	. 17	
5	An die Spannungsversorgung anschließen	. 20	
	5.1 Anschluss vorbereiten		
	5.2 Anschlussplan	. 20	
	5.3 Einschaltphase	. 21	
6	Zugriffsschutz	. 22	
	6.1 Bluetooth-Funkschnittstelle		
	6.2 Schutz der Parametrierung		
	6.3 Speicherung der Codes in myVEGA		
7	Mit Smartphone/Tablet in Betrieb nehmen (Bluetooth)	24	
'	7.1 Vorbereitungen		
	7.1 Vorbereitungen 7.2 Verbindung herstellen		
	7.3 Parametrierung		
_	5		
8	Mit PC/Notebook in Betrieb nehmen (Bluetooth)		
	8.1 Vorbereitungen		
	8.2 Verbindung herstellen		
	8.3 Parametrierung		
9	Bedienmenü	. 28	
	9.1 Menüübersicht		
	9.2 Abgleich – Stage Reference		
	9.3 Beschreibung der Anwendungen	. 30	
10	Diagnose und Service	. 34	
	10.1 Instandhalten		

	10.2	Störungen beseitigen	34
	10.3	Statusmeldungen nach NE 107	35
	10.4	Behandlung von Messfehlern	37
	10.5	Softwareupdate	39
	10.6	Vorgehen im Reparaturfall	40
11	Ausb	auen	41
	11.1	Ausbauschritte	41
	11.2	Entsorgen	41
12	Zertif	ikate und Zulassungen	42
		Funktechnische Zulassungen	
		Zulassungen für Ex-Bereiche	
		Zulassungen als Überfüllsicherung	
		Lebensmittel- und Pharmabescheinigungen	
	12.5	Konformität	
	12.6	NAMUR-Empfehlungen	42
	12.7	Umweltmanagementsystem	43
13	Anha	ng	44
	13.1	Technische Daten	44
		SDI-12 – Übersicht	
	13.3	Basic Commands	
	13.4	Extended Commands	50
	13.5	Device-Status1)	55
	13.6	VVO-Status1)	56
	13.7	Maße	56
	13.8	Gewerbliche Schutzrechte	57
	13.9	Licensing information for open source software	57
	13.10	Warenzeichen	

Sicherheitshinweise für Ex-Bereiche:

Beachten Sie bei Ex-Anwendungen die Ex-spezifischen Sicherheitshinweise. Diese liegen jedem Gerät mit Ex-Zulassung als Dokument bei und sind Bestandteil der Betriebsanleitung.

Redaktionsstand: 2022-10-26

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, den Austausch von Teilen und die Sicherheit des Anwenders. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, **Hinweis**, **Tipp**: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen und Tipps für erfolgreiches Arbeiten.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Warnung: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der VEGAPULS C 22 ist ein Sensor zur kontinuierlichen Füllstandmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Der Betreiber ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich der Betreiber durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

Die geringe Sendeleistung des Radarsensors liegt weit unter den international zugelassenen Grenzwerten. Bei bestimmungsgemäßem Gebrauch sind keinerlei gesundheitliche Beeinträchtigungen zu erwarten. Den Bandbereich der Messfrequenz finden Sie in Kapitel "Technische Daten".

2.5 Betriebsart - Radarsignal

Über die Betriebsart werden länderspezifische Einstellungen für die Radarsignale festgelegt. Die Betriebsart muss zwingend zu Beginn der Inbetriebnahme im Bedienmenü über das jeweilige Bedientool eingestellt werden.

Vorsicht:

Ein Betrieb des Gerätes ohne die Auswahl der zutreffenden Betriebsart stellt einen Verstoß gegen die Bestimmungen der funktechnischen Zulassungen des jeweiligen Landes dar.

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

- Radarsensor
- Informationsblatt "Dokumente und Software" mit:
 - Geräte-Seriennummer
 - QR-Code mit Link zum direkten Abscannen
- Informationsblatt "PINs und Codes" (bei Bluetooth-Ausführungen) mit:
 - Bluetooth-Zugangscode
- Informationsblatt "Access protection" (bei Bluetooth-Ausführungen) mit:
 - Bluetooth-Zugangscode
 - Notfall-Bluetooth-Zugangscode
 - Notfall-Gerätecode

Der weitere Lieferumfang besteht aus:

- Dokumentation
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Funktechnische Zulassungen
 - Ggf. weiteren Bescheinigungen

•

Information:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Geltungsbereich dieser Betriebsanleitung

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführungen:

- Hardwareversion ab 1.2.0
- Softwareversion ab 1.2.0

Komponenten

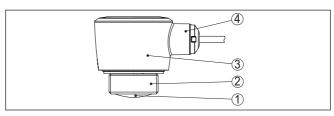


Abb. 1: Komponenten des VEGAPULS C 22

- 1 Radarantenne
- 2 Prozessanschluss
- 3 Elektronikgehäuse
- 4 Kabelabgang

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes.

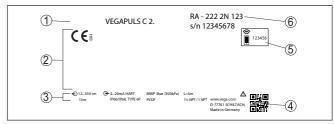


Abb. 2: Aufbau des Typschildes (Beispiel)

- 1 Gerätetyp
- 2 Feld für Zulassungen
- 3 Technische Daten
- 4 QR-Code für Gerätedokumentation
- 5 Bluetooth-Zugangscode
- 6 Bestellnummer

Dokumente und Software

Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.

Dort finden Sie folgendes zum Gerät:

- Auftragsdaten
- Dokumentation
- Software

Alternativ finden Sie alles über Ihr Smartphone:

- QR-Code auf dem Typschild des Gerätes scannen oder
- Seriennummer manuell in die VEGA Tools-App eingeben (kostenfrei verfügbar in den jeweiligen Stores)

3.2 Arbeitsweise

Anwendungsbereich

Der VEGAPULS C 22 ist ein Radarsensor zur berührungslosen, kontinuierlichen Füllstandmessung. Er ist geeignet für Flüssigkeiten und Schüttgüter in nahezu allen Industriebereichen.

Das Gerät ist zum Anschluss an Datenlogger mit SDI-12-Schnittstelle vorgesehen, es ist damit besonders geeignet für batterieunterstützte Anwendungen mit Forderung nach geringer Stromaufnahme.

Versorgung und Signalauswertung

Der VEGAPULS C 22 SDI-12 lässt sich an jedem Datenlogger mit SDI-12-Schnittstelle betreiben. Die Sensoren werden über die +12 V-Leitung der dreiadrigen Verbindungsleitung versorgt.

Funktionsprinzip

Das Gerät sendet über seine Antenne ein kontinuierliches, frequenzmoduliertes Radarsignal aus. Das ausgesandte Signal wird vom Medium reflektiert und von der Antenne als Echo mit geänderter Frequenz empfangen. Die Frequenzänderung ist proportional zur Distanz und wird in die Füllhöhe umgerechnet.

Drahtlose Bedienung

3.3 Bedienung

Das optional integrierte Bluetooth-Modul ermöglicht eine drahtlose Bedienung des VEGAPULS C 22. Dies erfolgt über Standard-Bediengeräte:

- Smartphone/Tablet (iOS- oder Android-Betriebssystem)
- PC/Notebook mit Bluetooth-USB-Adapter (Windows-Betriebssystem)

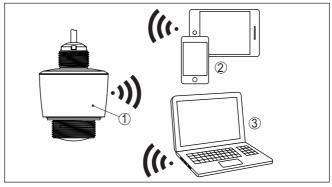


Abb. 3: Drahtlose Verbindung zu Standard-Bediengeräten mit integriertem Bluetooth LE

- 1 Sensor
- 2 Smartphone/Tablet
- 3 PC/Notebook

Bedienung über die Signalleitung

Die Steuerung der SDI-12-Datenkommunikation erfolgt durch Kommandos des SDI-12-Datenloggers über die Signalleitung.

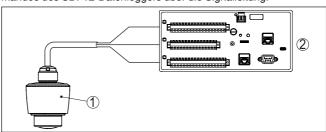


Abb. 4: Anschluss des VEGAPULS C 22 SDI-12 an den Datenlogger

- 1 Sensor
- 2 Datenlogger

3.4 Verpackung, Transport und Lagerung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Die Geräteverpackung besteht aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich

Verpackung

PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten Umgebungsbedingungen"
- Belative Luftfeuchte 20 ... 85 %

3.5 Zubehör

Flansche

Gewindeflansche stehen in verschiedenen Ausführungen nach folgenden Standards zur Verfügung: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Einschweißstutzen, Gewinde- und Hygieneadapter Einschweißstutzen dienen zum Anschluss der Geräte an den Prozess.

Gewinde- und Hygieneadapter ermöglichen die einfache Adaption von Geräten mit Standard-Gewindeanschluss an prozessseitige Hygieneanschlüsse.

Montagebügel

Das Montagezubehör dient zur stabilen Montage des Gerätes an der Messstelle. Die Teile stehen in verschiedenen Ausführungen und Größen zur Verfügung.

4 Montieren

4.1 Allgemeine Hinweise

Umgebungsbedingungen

Das Gerät ist für normale und erweiterte Umgebungsbedingungen nach DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1 geeignet. Es kann sowohl im Innen- als auch im Außenbereich eingesetzt werden.

Prozessbedingungen

Hinweis

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

4.2 Montagevarianten

Deckenmontage

Die einfachste Montage des Gerätes erfolgt an der Decke. Der passende Deckenadapter ist im Lieferumfang.

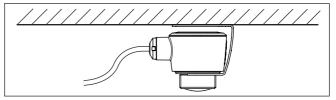


Abb. 5: Deckenmontage

Montagewinkel

Für die Wandmontage empfiehlt sich ein Montagewinkel mit Öffnung für Gewinde G1½, z. B. aus dem VEGA-Lieferprogramm. Die Befestigung des Gerätes im Winkel erfolgt über eine G1½-Gegenmutter aus Kunststoff. Für den empfohlenen Abstand zur Wand ist das Kapitel "Montagehinweise" zu beachten.

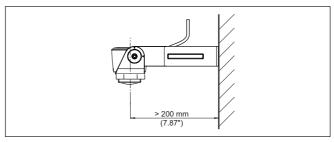


Abb. 6: Montage über einen Montagewinkel

4.3 Montagehinweise

Polarisation

Radarsensoren zur Füllstandmessung senden elektromagnetische Wellen aus. Die Polarisation ist die Richtung des elektrischen Anteils dieser Wellen.

Die Lage der Polarisation ist in der Mitte des Typschildes am Gerät.

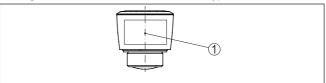


Abb. 7: Lage der Polarisation

1 Mitte des Typschildes

Hinweis:

Durch Drehen des Gerätes ändert sich die Polarisation und damit die Auswirkung von Störechos auf den Messwert. Beachten Sie dies bei der Montage bzw. bei nachträglichen Veränderungen.

Montageposition

Montieren Sie das Gerät an einer Position, die mindestens 200 mm (7.874 in) von einer Wand oder Konstruktionsteilen (siehe Darstellungen oben) entfernt ist.

Wenn Sie diesen Abstand nicht einhalten können, sollten Sie bei der Inbetriebnahme eine Störsignalausblendung durchführen. Dies gilt vor allem, wenn Anhaftungen an der Wand oder den Konstruktionsteilen zu erwarten sind. In diesem Fall empfiehlt es sich, die Störsignalausblendung zu einem späteren Zeitpunkt mit vorhandenen Anhaftungen zu wiederholen.

Bezugsebene

Die Mitte der Antennenlinse ist der Beginn des Messbereichs und gleichzeitig die Bezugsebene für den Min.-/Max.-Abgleich, siehe folgende Grafik:

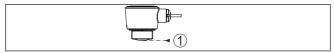


Abb. 8: Bezugsebene

1 Bezugsebene

Einströmendes Medium

Montieren Sie die Geräte nicht über oder in den Befüllstrom. Stellen Sie sicher, dass Sie die Mediumoberfläche erfassen und nicht das einströmende Medium.

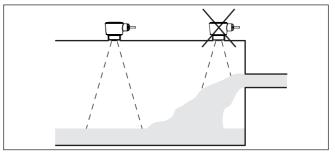


Abb. 9: Montage des Radarsensors bei einströmendem Medium

Stutzen

Bei Stutzenmontage sollte der Stutzen möglichst kurz und das Stutzenende abgerundet sein. Damit werden Störreflexionen durch den Stutzen gering gehalten.

Bei Gewindestutzen sollte der Antennenrand mindestens 5 mm (0.2 in) aus dem Stutzen herausragen.

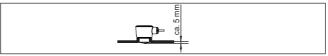


Abb. 10: Empfehlenswerte Gewindestutzenmontage des VEGAPULS C 22

Bei guten Reflexionseigenschaften des Mediums können Sie den VEGAPULS C 22 auch auf Rohrstutzen montieren, die länger als die Antenne sind. Das Stutzenende sollte in diesem Fall glatt und gratfrei, wenn möglich sogar abgerundet sein.

•

Hinweis:

Bei der Montage auf längeren Rohrstutzen empfehlen wir, eine Störsignalausblendung durchführen (siehe Kapitel "*Parametrieren*").

Richtwerte für die Stutzenlängen finden Sie in der nachfolgenden Abbildung bzw. Tabelle. Die Werte wurde aus typischen Anwendungen abgeleitet. Abweichend von den vorgeschlagenen Abmessungen sind auch größere Stutzenlängen möglich, allerdings müssen die örtlichen Gegebenheiten berücksichtigt werden.

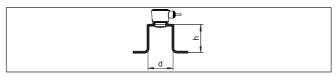


Abb. 11: Rohrstutzenmontage bei abweichenden Rohrstutzenmaßen

Stutzendurchmesser d		Stutzenlänge h	
40 mm	11/2"	≤ 150 mm	≤ 5.9 in
50 mm	2"	≤ 200 mm	≤ 7.9 in
80 mm	3"	≤ 300 mm	≤ 11.8 in
100 mm	4"	≤ 400 mm	≤ 15.8 in
150 mm	6"	≤ 600 mm	≤ 23.6 in

Behältereinbauten

Der Einbauort des Radarsensors sollte so gewählt werden, dass keine Einbauten die Radarsignale kreuzen.

Behältereinbauten, wie z. B. Leitern, Grenzschalter, Heizschlangen, Behälterverstrebungen etc. können Störechos verursachen und das Nutzecho beeinträchtigen. Achten Sie bei der Projektierung Ihrer Messstelle auf eine möglichst "freie Sicht" der Radarsignale zum Medium.

Bei vorhandenen Behältereinbauten sollten Sie bei der Inbetriebnahme eine Störsignalausblendung durchführen.

Wenn große Behältereinbauten wie Streben und Träger zu Störechos führen, können diese durch zusätzliche Maßnahmen abgeschwächt werden. Kleine, schräg angebaute Blenden aus Blech über den Einbauten "streuen" die Radarsignale und verhindern so wirkungsvoll eine direkte Störechoreflexion.

Abb. 12: Glatte Profile mit Streublenden abdecken

Ausrichtung

Richten Sie das Gerät in Flüssigkeiten möglichst senkrecht auf die Mediumoberfläche, um optimale Messergebnisse zu erzielen.

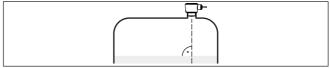


Abb. 13: Ausrichtung in Flüssigkeiten

Rührwerke

Bei Rührwerken im Behälter sollten Sie eine Störsignalausblendung bei laufendem Rührwerk durchführen. Somit ist sichergestellt, dass die Störreflektionen des Rührwerks in unterschiedlichen Positionen abgespeichert werden.

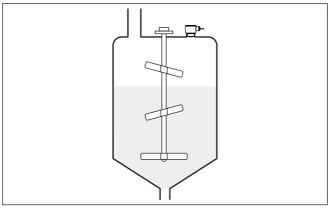


Abb. 14: Rührwerke

Schaumbildung

Durch Befüllung, Rührwerke oder andere Prozesse im Behälter, können sich zum Teil sehr kompakte Schäume auf der Mediumoberfläche bilden, die das Sendesignal sehr stark dämpfen.

Hinweis:

Wenn Schäume zu Messfehlern führen, sollten Sie größtmögliche Radarantennen oder alternativ Sensoren mit geführtem Radar einsetzen.

4.4 Messanordnungen - Pegel

Grundsätzlich ist zur Montage des Sensors folgendes zu beachten:

- Montage an solidem Ausleger bzw. Montagewinkel
- Hoch- und Niedrigwasser f
 ür Montageposition
- Messung auf möglichst planer Wasseroberfläche in beruhigtem Bereich
- Mindestabstand zur max. Pegelhöhe

Die folgenden Beispiele dienen als Übersicht zur Pegelmessung.

Flusspegel

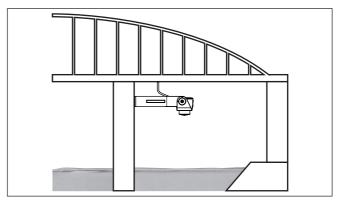


Abb. 15: Pegelmessung Fluss, Sensormontage an Brückenpfeiler

Staudammpegel

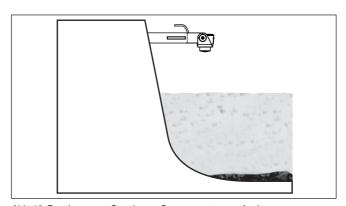


Abb. 16: Pegelmessung Staudamm, Sensormontage an Ausleger

Tiefbrunnenpegel

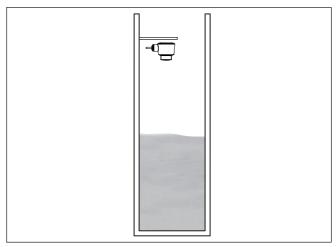


Abb. 17: Pegelmessung Tiefbrunnen, Sensormontage auf Deckel

4.5 Messanordnungen - Durchfluss

Montage

Grundsätzlich ist zur Montage des Gerätes folgendes zu beachten:

- Einbau auf Oberwasser- bzw. Zulaufseite
- Einbau mittig zum Gerinne und senkrecht zur Oberfläche der Flüssigkeit
- Abstand zur Überfallblende bzw. Venturirinne
- Abstand zur max. Höhe von Blende bzw. Gerinne für optimale Messgenauigkeit: > 250 mm (9.843 in)¹⁾
- Anforderungen aus Zulassungen zur Durchflussmessung, z. B. MCERTS

Gerinne

Vorgegebene Kurven:

Eine Durchflussmessung mit diesen Standardkurven ist sehr einfach einzurichten, da keine Dimensionsangaben des Gerinnes erforderlich sind.

- Palmer-Bowlus-Flume (Q = k x h^{1,86})
- Venturi, Trapezwehr, Rechtecküberfall (Q = k x h^{1,5})
- V-Notch, Dreiecküberfall (Q = k x h^{2,5})

Gerinne mit Abmessungen nach ISO-Standard:

Bei Auswahl dieser Kurven müssen die Dimensionsangaben des Gerinnes bekannt sein und über den Assistenten eingegeben werden. Hierdurch ist die Genauigkeit der Durchflussmessung höher als bei den vorgegebenen Kurven.

- Rechteckgerinne (ISO 4359)
- Trapezgerinne (ISO 4359)
- U-förmiges Gerinne (ISO 4359)

Der angegebene Wert berücksichtigt die Blockdistanz. Bei geringeren Abständen reduziert sich die Messgenauigkeit, siehe "Technische Daten".

- Dreiecküberfall dünnwandig (ISO 1438)
- Rechtecküberfall dünnwandig (ISO 1438)
- Rechteckwehr breite Krone (ISO 3846)

Durchflussformel:

Wenn von Ihrem Gerinne die Durchflussformel bekannt ist, sollten Sie diese Option wählen, da hier die Genauigkeit der Durchflussmessung am höchsten ist.

Durchflussformel: Q = k x h^{exp}

Herstellerdefinition:

Wenn Sie ein Parshall-Gerinne des Herstellers ISCO verwenden, muss diese Option ausgewählt werden. Hiermit erhalten Sie eine hohe Genauigkeit der Durchflussmessung bei gleichzeitig einfacher Konfiguration.

Alternativ können Sie hier auch vom Hersteller bereitgestellte Q/h-Tabellenwerte übernehmen.

- ISCO-Parshall-Flume
- Q/h-Tabelle (Zuweisung von Höhe mit entsprechendem Durchfluss in einer Tabelle)

ĭ

Tipp:

Detaillierte Projektierungsdaten finden Sie bei den Gerinneherstellern und in der Fachliteratur.

Die folgenden Beispiele dienen als Übersicht zur Durchflussmessung.

Rechtecküberfall

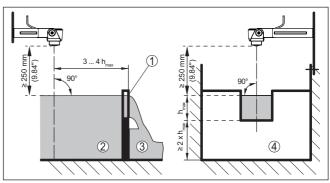


Abb. 18: Durchflussmessung mit Rechtecküberfall: h_{max.} = max. Befüllung des Rechtecküberfalls

- 1 Überfallblende (Seitenansicht)
- 2 Oberwasser
- 3 Unterwasser
- 4 Überfallblende (Ansicht vom Unterwasser)

Khafagi-Venturirinne

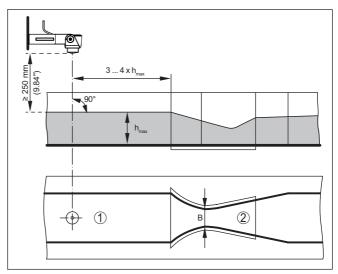


Abb. 19: Durchflussmessung mit Khafagi-Venturirinne: h_{max} = max. Befüllung der Rinne; B = größte Einschnürung der Rinne

- 1 Position Sensor
- 2 Venturirinne

5 An die Spannungsversorgung anschließen

5.1 Anschluss vorbereiten

Sicherheitshinweise

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen

Warnung:

Nur in spannungslosem Zustand anschließen bzw. abklemmen.

Spannungsversorgung

Die Spannungsversorgung des Gerätes erfolgt über einen SDI-12-Datalogger.

Hinweis:

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis (Leistung max. 100 W) nach IEC 61010-1, z. B.:

- Class 2-Netzteil (nach UL1310)
- SELV-Netzteil (Sicherheitskleinspannung) mit passender interner oder externer Begrenzung des Ausgangsstromes

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten".

Anschlusskabel

Das Gerät wird mit fest angeschlossenem Kabel geliefert. Falls eine Verlängerung erforderlich ist, kann handelsübliches, dreiadriges Kabel verwendet werden.

Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326-1 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Kabelschirmung und Erdung

Wir empfehlen, bei abgeschirmtem Kabel die Kabelschirmung einseitig auf der Versorgungsseite auf Erdpotenzial zu legen.

5.2 Anschlussplan

Aderbelegung Anschlusskabel

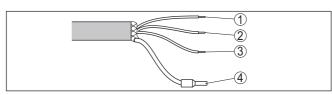


Abb. 20: Aderbelegung fest angeschlossenes Anschlusskabel

	Aderfarbe	Funktion	Polarität
1	Braun	Spannungsversorgung	Plus (+)
2	Blau	Spannungsversorgung	Minus (-)
3	Weiß	SDI Data	Plus (+)
4		Abschirmung	

5.3 Einschaltphase

Nach dem Anschluss an die Spannungsversorgung führt das Gerät einen Selbsttest durch.

Hinweis:

Während dieses Selbsttests werden keine SDI-12-Befehle beantwortet

Nach dem Selbsttest wird die standardmäßige SDI-12-Kommunikation aufgenommen. Übertragene Messwerte berücksichtigen bereits durchgeführte Einstellungen, z. B. den Werksabgleich.

6 Zugriffsschutz

6.1 Bluetooth-Funkschnittstelle

Geräte mit Bluetooth-Funkschnittstelle sind gegen einen unerwünschten Zugriff von außen geschützt. Dadurch ist der Empfang von Mess- und Statuswerten sowie das Ändern von Geräteeinstellungen über diese Schnittstelle nur autorisierten Personen möglich.

Bluetooth-Zugangscode

Zum Aufbau der Bluetooth-Kommunikation über das Bedientool (Smartphone/Tablet/Notebook) ist ein Bluetooth-Zugangscode erforderlich. Dieser muss einmalig beim ersten Aufbau der Bluetooth-Kommunikation in das Bedientool eingegeben werden. Danach ist er im Bedientool gespeichert und muss nicht mehr erneut eingegeben werden.

Der Bluetooth-Zugangscode ist für jedes Gerät individuell. Er ist bei Geräten mit Bluetooth auf dem Gerätegehäuse aufgedruckt. Zusätzlich wird er im Informationsblatt "PINs und Codes" mit dem Gerät geliefert. Zusätzlich kann der Bluetooth-Zugangscode je nach Geräteausführung über die Anzeige- und Bedieneinheit ausgelesen werden.

Der Bluetooth-Zugangscode kann durch den Anwender nach dem ersten Verbindungsaufbau geändert werden. Nach einer Fehleingabe des Bluetooth-Zugangscodes ist die Neueingabe erst nach Ablauf einer Wartezeit möglich. Die Wartezeit steigt mit jeder weiteren Fehleingabe.

Notfall-Bluetooth-Zugangscode

Der Notfall-Bluetooth-Zugangscode ermöglicht den Aufbau einer Bluetooth-Kommunikation für den Fall, dass der Bluetooth-Zugangscode nicht mehr bekannt ist. Er ist nicht veränderbar. Der Notfall-Bluetooth-Zugangscode befindet sich auf dem Informationsblatt "Access protection". Sollte dieses Dokument verloren gehen, kann der Notfall-Bluetooth-Zugangscode bei ihrem persönlichen Ansprechpartner nach Legitimation abgerufen werden. Die Speicherung sowie die Übertragung der Bluetooth-Zugangscodes erfolgt immer verschlüsselt (SHA 256-Algorithmus).

6.2 Schutz der Parametrierung

Die Einstellungen (Parameter) des Gerätes können gegen unerwünschte Veränderungen geschützt werden. Im Auslieferungszustand ist der Parameterschutz deaktiviert, es können alle Einstellungen vorgenommen werden.

Gerätecode

Zum Schutz der Parametrierung kann das Gerät vom Anwender mit Hilfe eines frei wählbaren Gerätecodes gesperrt werden. Die Einstellungen (Parameter) können danach nur noch ausgelesen, aber nicht mehr geändert werden. Der Gerätecode wird ebenfalls im Bedientool gespeichert. Er muss jedoch im Unterschied zum Bluetooth-Zugangscode für jedes Entsperren neu eingegeben werden. Bei Benutzung der Bedien-App bzw. des DTM wird dann der gespeicherte Gerätecode dem Anwender zum Entsperren vorgeschlagen.

Notfall-Gerätecode

Der Notfall-Gerätecode ermöglicht das Entsperren des Gerätes für den Fall, dass der Gerätecode nicht mehr bekannt ist. Er ist nicht veränderbar. Der Notfall-Gerätecode befindet sich auf dem mitgelieferten Informationsblatt "Access protection". Sollte dieses Dokument verloren gehen, kann der Notfall-Gerätecode bei ihrem persönlichen Ansprechpartner nach Legitimation abgerufen werden. Die Speicherung sowie die Übertragung der Gerätecodes erfolgt immer verschlüsselt (SHA 256-Algorithmus).

6.3 Speicherung der Codes in myVEGA

Besitzt der Anwender ein "myVEGA"-Konto, so werden sowohl der Bluetooth-Zugangscode als auch der Gerätecode zusätzlich in seinem Konto unter "PINs und Codes" gespeichert. Der Einsatz weiterer Bedientools wird dadurch sehr vereinfacht, da alle Bluetooth-Zugangs- und Gerätecodes bei Verbindung mit dem "myVEGA"-Konto automatisch synchronisiert werden.

7 Mit Smartphone/Tablet in Betrieb nehmen (Bluetooth)

7.1 Vorbereitungen

Systemvoraussetzungen

Stellen Sie sicher, dass Ihr Smartphone/Tablet die folgenden Systemvoraussetzungen erfüllt:

- Betriebssystem: iOS 8 oder neuer
- Betriebssystem: Android 5.1 oder neuer
- Bluetooth 4.0 LF oder neuer

Laden Sie die VEGA Tools-App aus dem "Apple App Store", dem "Google Play Store" bzw. dem "Baidu Store" auf Ihr Smartphone oder Tablet.

7.2 Verbindung herstellen

Verbindung aufbauen

Starten Sie die Bedien-App und wählen Sie die Funktion "Inbetriebnahme". Das Smartphone/Tablet sucht automatisch Bluetooth-fähige Geräte in der Umgebung.

Die Meldung "Verbindungsaufbau läuft" wird angezeigt.

Die gefundenen Geräte werden aufgelistet und die Suche wird automatisch kontinuierlich fortgesetzt.

Wählen Sie in der Geräteliste das gewünschte Gerät aus.

Authentifizieren

Beim ersten Verbindungsaufbau müssen sich Bedientool und Sensor gegenseitig authentifizieren. Nach der ersten korrekten Authentifizierung erfolgt jede weitere Verbindung ohne erneute Authentifizierungsabfrage.

Bluetooth-Zugangscode eingeben

Geben Sie zur Authentifizierung im nächsten Menüfenster den 6-stelligen Bluetooth-Zugangscode ein. Sie finden den Code außen auf dem Gerätegehäuse sowie auf dem Informationsblatt "PINs und Codes" in der Geräteverpackung.

Für den allerersten Verbindungsaufbau müssen sich das Bediengerät und der Sensor gegenseitig authentifizieren.

Bluetooth-Zugangscode OK

Geben Sie dazu den 6-stelligen Bluetooth-Zugangscode Ihres Bluetooth-Gerätes ein.

Abb. 21: Eingabe Bluetooth-Zugangscode

Hinweis:

ĭ

Wird ein falscher Code eingegeben, so ist eine erneute Eingabe erst nach einer Verzögerungszeit möglich. Diese Zeit verlängert sich nach jeder weiteren falschen Eingabe.

Die Meldung "Warte auf Authentifizierung" wird auf dem Smartphone/ Tablet angezeigt.

Verbindung hergestellt

Nach hergestellter Verbindung erscheint das Sensor-Bedienmenü auf dem jeweiligen Bedientool.

Wird die Bluetooth-Verbindung unterbrochen, z. B. bei zu großer Entfernung zwischen beiden Geräten, so wird dies entsprechend auf dem Bedientool angezeigt. Wird die Verbindung wiederhergestellt, so erlischt die Meldung.

Gerätecode ändern

Eine Parametrierung des Gerätes ist nur möglich, wenn der Schutz der Parametrierung deaktiviert ist. Bei Auslieferung ist der Schutz der Parametrierung werkseitig deaktiviert, er kann jederzeit aktiviert werden.

Es ist empfehlenswert, einen persönlichen 6-stelligen Gerätecode einzugeben. Gehen Sie hierzu zum Menü "*Erweiterte Funktionen*", "*Zugriffsschutz*", Menüpunkt "*Schutz der Parametrierung*".

7.3 Parametrierung

Parameter eingeben

Das Sensor-Bedienmenü ist in zwei Bereiche unterteilt, die je nach Bedientool nebeneinander oder untereinander angeordnet sind.

- Navigationsbereich
- Menüpunktanzeige

Der ausgewählte Menüpunkt ist am Farbumschlag erkennbar.

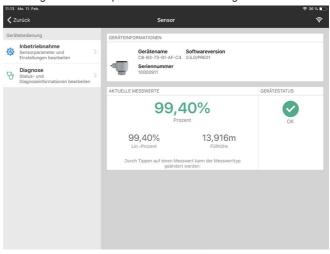


Abb. 22: Beispiel einer App-Ansicht - Inbetriebnahme Messwerte

Geben Sie die gewünschten Parameter ein und bestätigen Sie über die Tastatur oder das Editierfeld. Die Eingaben sind damit im Sensor

Um die Verbindung zu beenden, schließen Sie die App.

8 Mit PC/Notebook in Betrieb nehmen (Bluetooth)

8.1 Vorbereitungen

Systemvoraussetzungen

Stellen Sie sicher, dass Ihr PC/Notebook die folgenden Systemvoraussetzungen erfüllt:

- Betriebssystem Windows 10
- DTM Collection 10/2020 oder neuer
- Bluetooth 4.0 LF oder neuer

Bluetooth-Verbindung aktivieren

Aktivieren Sie die Bluetooth-Verbindung über den Projektassistenten.

Hinweis:

Ältere Systeme verfügen nicht immer über ein integriertes Bluetooth LE. In diesen Fällen ist ein Bluetooth-USB-Adapter erforderlich. Aktivieren Sie den Bluetooth-USB-Adapter über den Projektassistenten.

Nach Aktivieren des integrierten Bluetooth bzw. des Bluetooth-USB-Adapters werden Geräte mit Bluetooth gefunden und im Projektbaum angelegt.

8.2 Verbindung herstellen

Verbindung aufbauen

Wählen Sie im Projektbaum das gewünschte Gerät für die Online-Parametrierung aus.

Authentifizieren

Beim ersten Verbindungsaufbau müssen sich Bedientool und Gerät gegenseitig authentifizieren. Nach der ersten korrekten Authentifizierung erfolgt jede weitere Verbindung ohne erneute Authentifizierungsabfrage.

Bluetooth-Zugangscode eingeben

Geben Sie dann im nächsten Menüfenster zur Authentifizierung den 6-stelligen Bluetooth-Zugangscode ein:

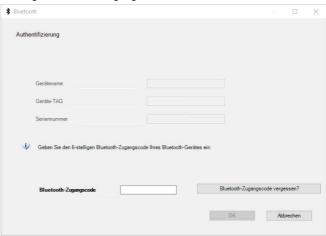


Abb. 23: Eingabe Bluetooth-Zugangscode

Sie finden den Code außen auf dem Gerätegehäuse sowie auf dem Informationsblatt "PINs und Codes" in der Geräteverpackung.

i

Hinweis:

Wird ein falscher Code eingegeben, so ist eine erneute Eingabe erst nach einer Verzögerungszeit möglich. Diese Zeit verlängert sich nach jeder weiteren falschen Eingabe.

Die Meldung "Warte auf Authentifizierung" wird auf dem PC/Notebook angezeigt.

Verbindung hergestellt

Nach hergestellter Verbindung erscheint der Geräte-DTM.

Wird die Verbindung unterbrochen, z. B. bei zu großer Entfernung zwischen Gerät und Bedientool, so wird dies entsprechend auf dem Bedientool angezeigt. Wird die Verbindung wiederhergestellt, so erlischt die Meldung.

Gerätecode ändern

Eine Parametrierung des Gerätes ist nur möglich, wenn der Schutz der Parametrierung deaktiviert ist. Bei Auslieferung ist der Schutz der Parametrierung werkseitig deaktiviert, er kann jederzeit aktiviert werden.

Es ist empfehlenswert, einen persönlichen 6-stelligen Gerätecode einzugeben. Gehen Sie hierzu zum Menü "*Erweiterte Funktionen*", "*Zugriffsschutz*", Menüpunkt "*Schutz der Parametrierung*".

8.3 Parametrierung

Voraussetzungen

Zur Parametrierung des Gerätes über einen Windows-PC ist die Konfigurationssoftware PACTware und ein passender Gerätetreiber (DTM) nach dem FDT-Standard erforderlich. Die jeweils aktuelle PACTware-Version sowie alle verfügbaren DTMs sind in einer DTM Collection zusammengefasst. Weiterhin können die DTMs in andere Rahmenapplikationen nach FDT-Standard eingebunden werden.

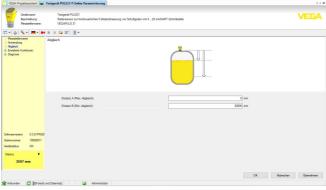


Abb. 24: Beispiel einer DTM-Ansicht - Inbetriebnahme Sensorabgleich

9 Bedienmenü

9.1 Menüübersicht

Startbild

Geräteinformation	Aktuelle Messwerte	Gerätestatus
*	Prozent, Füllhöhe, Distanz, Messsicherheit, Elektroniktemperatur, Messrate etc.	OK, Fehleranzeige

Grundfunktionen

Menüpunkt	Auswahl	Basiseinstellungen
Messstellenname	Alphanumerische Zeichen	Sensor
Anwendung Flüssigkeit	Lagertank, Rührwerksbehälter, Dosierbehälter, Pumpstation/Pumpenschacht, Regenüberlaufbecken, Behälter/ Sammelbecken, Kunststofftank (Messung durch Tankdecke), Mobiler Kunstofftank (IBC), Pegelmessung in Gewässern, Durchflussmessung Gerinne/Überfall, Demonstration	Lagertank
Anwendung Schüttgut	Silo (schlank und hoch), Bunker (großvolumig), Halde (Punktmessung/Profilerfassung), Brecher, Demonstration	Silo (schlank und hoch)
Einheiten	Distanzeinheit des Gerätes Temperatureinheit des Gerätes	Distanz in m Temperatur in °C
Abgleich	MaxAbgleich (Distanz A) MinAbgleich (Distanz B)	MaxAbgleich 0.000 m MinAbgleich 15.000 m ¹⁾

Erweiterte Funktionen

Menüpunkt	Auswahl	Basiseinstellungen
Dämpfung	Integrationszeit	0 s
Linearisierung	Linearisierungstyp	Linear
Skalierung	Skalierungsgröße	Volumen
	Skalierungseinheit	I
	Skalierungsformat	
	100 % entspricht	100 l
	0 % entspricht	01
Display	Sprache des Menüs	-
	Anzeigewert	Distanz
	Beleuchtung	Ein
Zugriffsschutz	Bluetooth-Zugangscode	-
	Schutz der Parametrierung	Deaktiviert
Störsignalausblendung Neu anlegen, erweitern, löschen, manueller Ein		-
Gelotete Distanz zum Füllgut		0 m

²⁾ Dieser Wert wird mit dem Befehl "Write Stage Reference" (siehe Kapitel "Extended Commands") geschrieben und dient als Referenzwert für den Stage Value

Menüpunkt	Auswahl	Basiseinstellungen
Reset	Auslieferungszustand, Basiseinstellungen	-
Betriebsart	Betriebsart 1: EU, Albanien, Andorra, Aserbaidschan, Australien, Belarus, Bosnien und Herzegowina, Großbitannien, Island, Kanada, Liechtenstein, Marokko, Moldavien, Monaco, Montenegro, Neu Seeland, Nord-Mazedonien, Norwegen, San Marino, Saudi Arabien, Schweiz, Serbien, Türkei, Ukraine, USA	Betriebsart 1
	Betriebsart 2: Brasilien, Japan, Südkorea, Taiwan, Thai- land	
	Betriebsart 3: Indien, Malaysia, Südafrika	
	Betriebsart 4: Russland, Kasachstan	
Statussignale	Funktionskontrolle	Ein
	Wartungsbedarf	Aus
	Außerhalb der Spezifikation	Aus

Diagnose

Menüpunkt	Auswahl	Basiseinstellungen
Status Gerätestatus		-
	Parameteränderungszähler	
	Messwertstatus	
	Status Ausgang	
	Status zusätzliche Messwerte	
Echokurve	Anzeige der Echokurve	-
Schleppzeiger	Schleppzeiger Distanz, Messsicherheit, Messrate, Elektroniktemperatur	-
Messwerte Messwerte		-
	Zusätzliche Messwerte	
	Ausgänge	
Sensorinformation	Gerätename, Seriennummer, Hard-/Softwareversion, Device Revision, Werkskalibrierdatum	-
Sensormerkmale	Sensormerkmale aus Bestelltext	-
Simulation	Messwert	-
	Simulationswert	
Messwertspeicher (DTM)	Anzeige Messwertspeicher aus DTM	

Abgleich

9.2 Abgleich – Stage Reference

Da es sich bei einem Radarsensor um ein Distanzmessgerät handelt, wird die Entfernung vom Sensor bis zur Mediumoberfläche gemessen. Um den eigentlichen Pegel/Füllstand anzeigen zu können, muss eine Zuweisung der gemessenen Distanz erfolgen.

Zur Durchführung dieses Abgleichs wird die Distanz bei Max.- und Min.-Pegel eingegeben, siehe folgendes Beispiel:

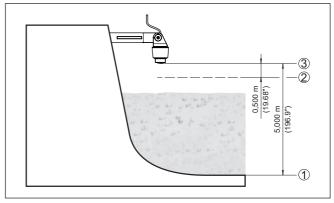


Abb. 25: Parametrierbeispiel Min.-/Max.-Abgleich

- 1 Min. Pegel = max. Messdistanz = Stage reference
- 2 Max. Pegel = min. Messdistanz
- 3 Bezugsebene

Ausgangspunkt für diese Distanzangaben ist immer die Bezugsebene, d. h. die Unterseite des Sensors. Angaben zur Bezugsebene finden Sie in den Kapiteln "*Montieren*" und "*Technische Daten*". Anhand dieser Eingaben wird dann der eigentliche Pegel/Füllstand errechnet.

Der aktuelle Füllstand spielt bei diesem Abgleich keine Rolle, der Min.-/Max.-Abgleich wird immer ohne Veränderung des Mediums durchgeführt. Somit können diese Einstellungen bereits im Vorfeld durchgeführt werden, ohne dass das Gerät eingebaut sein muss.

9.3 Beschreibung der Anwendungen

Anwendung

Dieser Menüpunkt ermöglicht es Ihnen, den Sensor optimal an die Anwendung, den Einsatzort und die Messbedingungen anzupassen. Die Einstellmöglichkeiten hängen von der unter "Medium" getroffenenen Auswahl "Flüssigkeit" oder "Schüttgut" ab.

Die Behälter sowie die Mess- und Prozessbedingungen werden im Folgenden als Übersicht beschrieben.

Anwendung - Flüssigkeit

Bei "Flüssigkeit" liegen den Anwendungen folgende Merkmale zugrunde, auf die die Messeigenschaft des Sensors jeweils abgestimmt wird:

Lagertank

- Behälter:
 - Großvolumig
 - Stehend zylindrisch, liegend rund
- Prozess-/Messbedingungen:
 - Langsame Befüllung und Entleerung
 - Ruhige Mediumoberfläche
 - Mehrfachreflektionen von klöpperförmiger Behälterdecke
 - Kondensatbildung

Rührwerksbehälter

- Behälter:
 - Große Rührwerksflügel aus Metall
 - Einbauten wie Strömungsbrecher, Heizschlangen
 - Stutzen
- Prozess-/Messbedingungen:
 - Häufige, schnelle bis langsame Befüllung und Entleerung
 - Stark bewegte Oberfläche, Schaum- und starke Trombenbildung
 - Mehrfachreflektionen durch klöpperförmige Behälterdecke
 - Kondensatbildung, Produktablagerungen am Sensor
- Weitere Empfehlungen
 - Störsignalausblendung bei laufendem Rührwerk über das Bedientool

Dosierbehälter

- Behälter:
 - Kleine Behälter
- Prozess-/Messbedingungen:
 - Häufige und schnelle Befüllung/Entleerung
 - Beengte Einbausituation
 - Mehrfachreflektionen durch klöpperförmige Behälterdecke
 - Produktablagerungen, Kondensat- und Schaumbildung

Pumpstation/Pumpenschacht

- Prozess-/Messbedingungen:
 - Teilweise stark bewegte Oberfläche
 - Einbauten wie Pumpen und Leitern
 - Mehrfachreflektionen durch flache Behälterdecke
 - Schmutz- und Fettablagerungen an Schachtwand und Sensor
 - Kondensatbildung am Sensor
- Weitere Empfehlungen
 - Störsignalausblendung über das Bedientool

Regenüberlaufbecken

- Behälter
 - Großvolumia
 - Teilweise unterirdisch eingebaut
- Prozess-/Messbedingungen:
 - Teilweise stark bewegte Oberfläche
 - Mehrfachreflektionen durch flache Behälterdecke
 - Kondensatbildung, Schmutzablagerungen am Sensor
 - Überflutung der Sensorantenne

Behälter/Sammelbecken

- Behälter:
 - Großvolumig
 - Stehend zylindrisch oder rechteckig
- Prozess-/Messbedingungen:
 - Langsame Befüllung und Entleerung
 - Ruhige Mediumoberfläche
 - Kondensatbildung

Kunststofftank (Messung durch die Tankdecke)

- Prozess-/Messbedingungen:
 - Messung je nach Anwendung durch die Tankdecke
 - Kondensatbildung an der Kunststoffdecke
 - Bei Außenanlagen Ablagerung von Wasser oder Schnee auf der Behälterdecke möglich
- Weitere Empfehlungen
 - Bei Messung durch die Tankdecke Störsignalausblendung über das Bedientool
 - Bei Messung durch die Tankdecke im Außenbereich Schutzdach für die Messstelle

Mobiler Kunststofftank (IBC)

- Prozess-/Messbedingungen:
 - Material und Dicke unterschiedlich
 - Messung je nach Anwendung durch die Behälterdecke
 - Veränderte Reflexionsbedingungen sowie Messwertsprünge bei Behälterwechsel
- Weitere Empfehlungen
 - Bei Messung durch die Tankdecke Störsignalausblendung über das Bedientool
 - Bei Messung durch die Tankdecke im Außenbereich Schutzdach für die Messstelle

Pegelmessung in Gewässern

- Prozess-/Messbedingungen:
 - Langsame Pegeländerung
 - Hohe Dämpfung des Ausgangssignals bei Wellenbildung
 - Eis- und Kondensatbildung an der Antenne möglich
 - Schwemmaut sporadisch auf der Wasseroberfläche

Durchflussmessung Gerinne/Überfall

- Prozess-/Messbedingungen:
 - Langsame Pegeländerung
 - Ruhige bis bewegte Wasseroberfläche
 - Messung oft aus kurzer Distanz mit Forderung nach genauem Messergebnis
 - Eis- und Kondensatbildung an der Antenne möglich

Demonstration

- Anwendungen, die nicht typische Füllstandmessungen sind, z. B. Gerätetests
 - Gerätedemonstration
 - Objekterkennung/-überwachung
 - Schnelle Positionsänderungen einer Messplatte bei Funktionsprüfung

Anwendung - Schüttgut

Bei "Schüttgut" liegen den Anwendungen folgende Merkmale zugrunde, auf die die Messeigenschaft des Sensors jeweils abgestimmt wird:

Silo (schlank und hoch)

Prozess-/Messbedingungen:

- Störreflexionen durch Schweißnähte am Behälter
- Mehrfachechos/Diffuse Reflexionen durch ungünstige Schüttlagen mit feiner Körnung
- Variierende Schüttlagen durch Abzugstrichter und Befüllkegel
- Weitere Empfehlungen
 - Störsignalausblendung über das Bedientool
 - Ausrichtung der Messung auf den Siloauslauf

Bunker (großvolumig)

- Prozess-/Messbedingungen:
 - Großer Abstand zum Medium
 - Steile Schüttwinkel, ungünstige Schüttlagen durch Abzugstrichter und Befüllkegel
 - Diffuse Reflexionen durch strukturierte Behälterwände oder Einbauten
 - Mehrfachechos/Diffuse Reflexionen durch ungünstige Schüttlagen mit feiner Körnung
 - Wechselnde Signalverhältnisse beim Abrutschen großer Materialmengen
- Weitere Empfehlungen
 - Störsignalausblendung über das Bedientool

Halde (Punktmessung/Profilerfassung)

- Prozess-/Messbedingungen:
 - Messwertsprünge z. B. durch Haldenprofil und Traversen
 - Große Schüttwinkel, variierende Schüttlagen
 - Messung dicht am Befüllstrom
 - Sensormontage am beweglichen Förderband

Brecher

- Prozess-/Messbedingungen:
 - Messwertsprünge und variierende Schüttlagen, z. B. durch LKW-Befüllung
 - Schnelle Reaktionsgeschwindigkeit
 - Großer Abstand zum Medium
 - Störreflexionen durch Einbauten oder Schutzeinrichtungen
- Weitere Empfehlungen
 - Störsignalausblendung über das Bedientool

Demonstration

- Anwendungen, die nicht typische Füllstandmessungen sind
 - Gerätedemonstration
 - Objekterkennung/-überwachung
 - Messwertüberprüfung mit höherer Messgenauigkeit bei Reflexion ohne Schüttgut, z. B. über eine Messplatte

10 Diagnose und Service

10.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Vorkehrungen gegen Anhaftungen

Bei manchen Anwendungen können Füllgutanhaftungen am Antennensystem das Messergebnis beeinflussen. Treffen Sie deshalb je nach Sensor und Anwendung Vorkehrungen, um eine starke Verschmutzung des Antennensystems zu vermeiden. Ggf. ist das Antennensystem in bestimmten Abständen zu reinigen.

Reinigung

Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind.

Beachten Sie hierzu folgendes:

- Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen
- Nur Reinigungsmethoden einsetzen, die der Geräteschutzart entsprechen

10.2 Störungen beseitigen

Verhalten bei Störungen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Störungsursachen

Das Gerät bietet Ihnen ein Höchstmaß an Funktionssicherheit. Dennoch können während des Betriebes Störungen auftreten. Diese können z. B. folgende Ursachen haben:

- Sensor
- Prozess
- Spannungsversorgung
- Signalauswertung

Störungsbeseitigung

Die ersten Maßnahmen sind:

- Auswertung von Fehlermeldungen
- Überprüfung des Ausgangssignals
- · Behandlung von Messfehlern

Weitere umfassende Diagnosemöglichkeiten bieten Ihnen ein Smartphone/Tablet mit der Bedien-App bzw. ein PC/Notebook mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

Verhalten nach Störungsbeseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

24 Stunden Service-Hotline

Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550

Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung.

Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an.

10.3 Statusmeldungen nach NE 107

Das Gerät verfügt über eine Selbstüberwachung und Diagnose nach NE 107 und VDI/VDE 2650. Zu den in den folgenden Tabellen angegebenen Statusmeldungen sind detailliertere Fehlermeldungen unter dem Menüpunkt "*Diagnose*" über das jeweilige Bedientool ersichtlich.

Statusmeldungen

Die Statusmeldungen sind in folgende Kategorien unterteilt:

- Ausfall
- Funktionskontrolle
- Außerhalb der Spezifikation
- Wartungsbedarf

und durch Piktogramme verdeutlicht:

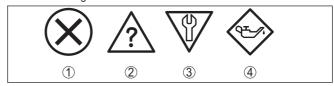


Abb. 26: Piktogramme der Statusmeldungen

- 1 Ausfall (Failure) rot
- 2 Außerhalb der Spezifikation (Out of specification) gelb
- 3 Funktionskontrolle (Function check) orange
- 4 Wartungsbedarf (Maintenance) blau

Ausfall (Failure):

Aufgrund einer erkannten Funktionsstörung im Gerät gibt das Gerät ein Ausfallsignal aus.

Diese Statusmeldung ist immer aktiv. Eine Deaktivierung durch den Anwender ist nicht möglich.

Funktionskontrolle (Function check):

Am Gerät wird gearbeitet, der Messwert ist vorübergehend ungültig (z. B. während der Simulation).

Diese Statusmeldung ist per Default inaktiv.

Außerhalb der Spezifikation (Out of specification):

Der Messwert ist unsicher, da die Gerätespezifikation überschritten ist (z. B. Elektroniktemperatur).

Diese Statusmeldung ist per Default inaktiv.

Wartungsbedarf (Maintenance):

Durch externe Einflüsse ist die Gerätefunktion eingeschränkt. Die Messung wird beeinflusst, der Messwert ist noch gültig. Gerät zur Wartung einplanen, da Ausfall in absehbarer Zeit zu erwarten ist (z. B. durch Anhaftungen).

Diese Statusmeldung ist per Default inaktiv.

Failure

Code	Ursache	Beseitigung
Textmeldung		
F013 Kein Messwert vorhan-	Kein Messwert in der Einschaltphase oder während des Betriebes	Einbau und/oder Parametrierung prüfen bzw. korrigieren
den	Sensor gekippt	Antennensystem reinigen
F017 Abgleichspanne zu klein	Abgleich nicht innerhalb der Spezifikation	Abgleich entsprechend der Grenzwerte ändern (Differenz zwischen Min. und Max. ≥ 10 mm)
F025	Stützstellen sind nicht stetig steigend,	Linearisierungstabelle prüfen
Fehler in der Linearisie- rungstabelle	z. B. unlogische Wertepaare	Tabelle löschen/neu anlegen
F036	Prüfsummenfehler bei fehlgeschlagenem	Softwareupdate wiederholen
Keine lauffähige Soft- ware	oder abgebrochenem Softwareupdate	Gerät zur Reparatur einsenden
F040	Grenzwertüberschreitung in der Signal-	Gerät neu starten
Fehler in der Elektronik	verarbeitung Hardwarefehler	Gerät zur Reparatur einsenden
F080	Allgemeiner Softwarefehler	Gerät neu starten
Allgemeiner Soft- warefehler		
F105	Gerät befindet sich noch in der Einschalt-	Ende der Einschaltphase abwarten
Ermittle Messwert	phase, der Messwert konnte noch nicht ermittelt werden	Dauer je nach Messumgebung und Para- metrierung bis zu 3 Minuten
F260	Prüfsummenfehler in den Kalibrierwerten	Gerät zur Reparatur einsenden
Fehler in der Kalibrie- rung	Fehler im EEPROM	
F261	Fehler bei der Inbetriebnahme	Inbetriebnahme wiederholen
Fehler in der Geräteein-	Störsignalausblendung fehlerhaft	Reset durchführen
stellung	Fehler beim Ausführen eines Resets	
F265	Programmablauf der Messfunktion gestört	Gerät startet automatisch neu
Messfunktion gestört		

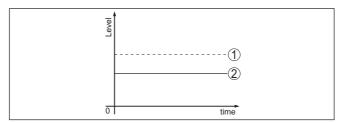
Function check

Code	Ursache	Beseitigung
Textmeldung		
C700	Eine Simulation ist aktiv	Simulation beenden
Simulation aktiv		Automatisches Ende nach 60 Minuten abwarten

Out of specification

Code	Ursache	Beseitigung
Textmeldung		
S600	Temperatur der Elektronik im nicht spezifi-	Umgebungstemperatur prüfen
Unzulässige Elektronik- temperatur	zierten Bereich	Elektronik isolieren
S601 Überfüllung	Gefahr der Überfüllung des Behälters	Sicherstellen, dass keine weitere Befüllung mehr stattfindet
		Füllstand im Behälter prüfen
S603	Klemmenspannung zu klein	Klemmenspannung prüfen, Betriebsspan-
Unzulässige Versor- gungsspannung		nung erhöhen

Maintenance


Code	Ursache	Beseitigung
Textmeldung		
M500	Beim Reset auf Auslieferungszustand	Reset wiederholen
Fehler im Auslieferungs- zustand	konnten die Daten nicht wiederhergestellt werden	XML-Datei mit Sensordaten in Sensor la- den
M501	Hardwarefehler EEPROM	Gerät zur Reparatur einsenden
Fehler im Auslieferungs- zustand		
M507	Fehler bei der Inbetriebnahme	Reset durchführen und Inbetriebnahme
Fehler in der Geräteein-	Fehler beim Ausführen eines Resets	wiederholen
stellung	Störsignalausblendung fehlerhaft	
M508	Prüfsummenfehler in Bluetooth-Software	Softwareupdate durchführen
Keine lauffähige Blue- tooth-Software		
M509	Softwareupdate läuft	Warten, bis SW-Update abgeschlossen ist
Softwareupdate läuft		
M510	Kommunikation zwischen Hauptelektronik	Verbindungsleitung zum Display prüfen
Keine Kommunikation mit dem Hauptcontroller	und Displaymodul gestört	Gerät zur Reparatur einsenden
M511	Eine Softwareeinheit benötigt ein Soft-	Softwareupdate durchführen
Inkonsistente Soft- warekonfiguration	wareupdate	

10.4 Behandlung von Messfehlern

Die unten stehenden Tabellen geben typische Beispiele für anwendungsbedingte Messfehler an.

Die Bilder in der Spalte "Fehlerbeschreibung" zeigen den tatsächlichen Füllstand als gestrichelte und den ausgegebenen Füllstand als durchgezogene Linie.

- 1 Tatsächlicher Füllstand
- 2 Vom Sensor angezeigter Füllstand

•

Hinweis:

Bei konstant ausgegebenem Füllstand könnte die Ursache auch die Störungseinstellung des Stromausganges auf "Wert halten" sein.

Bei zu geringem Füllstand könnte die Ursache auch ein zu hoher Leitungswiderstand sein.

Flüssigkeiten: Messfehler bei konstantem Füllstand

Fehlerbeschreibung	Ursache	Beseitigung
Messwert zeigt zu geringen	Min/MaxAbgleich nicht korrekt	Min/MaxAbgleich anpassen
bzw. zu hohen Füllstand	Linearisierungskurve falsch	Linearisierungskurve anpassen
Messwert springt Richtung 100 %	Prozessbedingt sinkt die Amplitude des Füllstandechos	Störsignalausblendung durchführen
la l	Störsignalausblendung wurde nicht durchgeführt	
Similar Simila	Amplitude oder Ort eines Störsignals hat sich geändert (z. B. Kondensat, Produktablagerungen); Störsignalausblendung passt nicht mehr	Ursache der veränderten Störsignale ermitteln, Störsignalausblendung z.B. mit Kondensat durchführen.

Flüssigkeiten: Messfehler bei Befüllung

Fehlerbeschreibung	Ursache	Beseitigung
Messwert bleibt bei der Befüllung stehen	Störsignale im Nahbereich zu groß bzw. Füllstandecho zu klein Starke Schaum- oder Trombenbildung MaxAbgleich nicht korrekt	Störsignale im Nahbereich beseitigen Messstelle prüfen: Antenne sollte aus dem Gewindestutzen ragen, evtl. Stö- rechos durch Flanschstutzen? Verschmutzungen an der Antenne be- seitigen Bei Störungen durch Einbauten im Nah- bereich, Polarisationsrichtung ändern Störsignalausblendung neu anlegen MaxAbgleich anpassen

Fehlerbeschreibung	Ursache	Beseitigung
Messwert springt bei der Befüllung in Richtung 0 %	Füllstandecho kann an einer Störsignalstelle nicht vom Störsignal unterschieden werden (springt auf Vielfachecho)	Bei Störungen durch Einbauten im Nah- bereich: Polarisationsrichtung ändern Günstigere Einbauposition wählen
Messwert springt bei Befüllung Richtung 100 %	Durch starke Turbulenzen und Schaum- bildung beim Befüllen sinkt die Amplitude des Füllstandechos. Mess- wert springt auf Störsignal	Störsignalausblendung durchführen
Messwert springt bei Befüllung sporadisch auf 100 %	Variierendes Kondensat oder Ver- schmutzungen an der Antenne	Störsignalausblendung durchführen oder Störsignalausblendung mit Kondensat/Verschmutzung im Nahbereich durch Editieren erhöhen
Messwert springt auf ≥ 100 % bzw. 0 m Distanz	Füllstandecho wird im Nahbereich wegen Schaumbildung oder Störsignalen im Nahbereich nicht mehr detektiert. Sensor geht in die Überfüllsicherheit. Es wird der max. Füllstand (0 m Distanz) sowie die Statusmeldung "Überfüllsicherheit" ausgegeben.	Messstelle prüfen: Antenne sollte aus dem Gewindestutzen ragen, evtl. Stö- rechos durch Flanschstutzen? Verschmutzungen an der Antenne be- seitigen

Flüssigkeiten: Messfehler bei Entleerung

Fehlerbeschreibung	Ursache	Beseitigung
Messwert bleibt beim Entleeren im Nahbereich stehen	Störsignal größer als Füllstandecho Füllstandecho zu klein	Messstelle prüfen: Antenne sollte aus dem Gewindestutzen ragen, evtl. Stö- rechos durch Flanschstutzen?
		Verschmutzungen an der Antenne be- seitigen
S Smin		Bei Störungen durch Einbauten im Nahbereich: Polarisationsrichtung ändern
		Nach Beseitigung der Störsignale muss Störsignalausblendung gelöscht wer- den. Neue Störsignalausblendung durchführen
Messwert springt beim Ent- leeren sporadisch Richtung 100 %	Variierendes Kondensat oder Ver- schmutzungen an der Antenne	Störsignalausblendung durchführen oder Störsignalausblendung im Nahbereich durch Editieren erhöhen
3 ton		Bei Schüttgütern Radarsensor mit Luft- spülanschluss verwenden

10.5 Softwareupdate

Ein Update der Gerätesoftware erfolgt über Bluetooth.

Dazu sind folgende Komponenten erforderlich:

- Gerät
- Spannungsversorgung
- PC/Notebook mit PACTware/DTM und Bluetooth-USB-Adapter
- Aktuelle Gerätesoftware als Datei

Die aktuelle Gerätesoftware sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage.

Vorsicht:

Geräte mit Zulassungen können an bestimmte Softwarestände gebunden sein. Stellen Sie deshalb sicher, dass bei einem Softwareupdate die Zulassung wirksam bleibt.

Detallierte Informationen finden Sie im Downloadbereich auf unserer Homepage.

10.6 Vorgehen im Reparaturfall

Ein Geräterücksendeblatt sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage. Sie helfen uns damit, die Reparatur schnell und ohne Rückfragen durchzuführen.

Gehen Sie im Reparaturfall wie folgt vor:

- Für jedes Gerät ein Formular ausdrucken und ausfüllen
- Das Gerät reinigen und bruchsicher verpacken
- Das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt außen auf der Verpackung anbringen
- Adresse für Rücksendung bei der für Sie zuständigen Vertretung erfragen. Sie finden diese auf unserer Homepage.

11 Ausbauen

11.1 Ausbauschritte

Führen Sie zum Ausbau des Gerätes die Schritte der Kapitel "Montieren" und "An die Spannungsversorgung anschließen" sinngemäß umgekehrt durch.

Warnung:

Achten Sie beim Ausbau auf die Prozessbedingungen in Behältern oder Rohrleitungen. Es besteht Verletzungsgefahr z. B. durch hohe Drücke oder Temperaturen sowie aggressive oder toxische Medien. Vermeiden Sie dies durch entsprechende Schutzmaßnahmen.

11.2 Entsorgen

Führen Sie das Gerät einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Entfernen Sie zuvor eventuell vorhandene Batterien, sofern sie aus dem Gerät entnommen werden können und führen Sie diese einer getrennten Erfassung zu.

Sollten personenbezogene Daten auf dem zu entsorgenden Altgerät gespeichert sein, löschen Sie diese vor der Entsorgung.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

12 Zertifikate und Zulassungen

12.1 Funktechnische Zulassungen

Radai

Das Gerät wurde nach der aktuellen Ausgabe der zutreffenden landesspezifischen Normen bzw. Standards geprüft und zugelassen.

Bestimmungen für den Einsatz finden Sie im Dokument "Bestimmungen für Radar-Füllstandmessgeräte mit funktechnischen Zulassungen" auf unserer Homepage.

Bluetooth

Das Bluetooth-Funkmodul im Gerät wurde nach der aktuellen Ausgabe der zutreffenden landesspezifischen Normen bzw. Standards geprüft und zugelassen.

Die Bestätigungen sowie Bestimmungen für den Einsatz finden Sie im mitgelieferten Dokument "Funktechnische Zulassungen" bzw. auf unserer Homepage.

12.2 Zulassungen für Ex-Bereiche

Für das Gerät bzw. die Geräteserie sind zugelassene Ausführungen zum Einsatz in explosionsgefährdeten Bereichen verfügbar oder in Vorbereitung.

Die entsprechenden Dokumente finden Sie auf unserer Homepage.

12.3 Zulassungen als Überfüllsicherung

Für das Gerät bzw. die Geräteserie sind zugelassene Ausführungen zum Einsatz als Teil einer Überfüllsicherung verfügbar oder in Vorbereitung.

Die entsprechenden Zulassungen finden Sie auf unserer Homepage.

12.4 Lebensmittel- und Pharmabescheinigungen

Für das Gerät bzw. die Geräteserie sind Ausführungen zum Einsatz im Lebensmittel- und Pharmabereich verfügbar oder in Vorbereitung. Die entsprechenden Bescheinigungen finden Sie auf unserer Home-

page.

12.5 Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden landesspezifischen Richtlinien bzw. technischen Regelwerke. Mit der entsprechenden Kennzeichnung bestätigen wir die Konformität.

Die zugehörigen Konformitätserklärungen finden Sie auf unserer Homepage.

12.6 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen

NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 43 Signalpegel f
 ür die Ausfallinformation von Messumformern
- NE 53 Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten
- NE 107 Selbstüberwachung und Diagnose von Feldgeräten

Weitere Informationen siehe www.namur.de.

12.7 Umweltmanagementsystem

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN FN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in den Kapiteln "Verpackung, Transport und Lagerung", "Entsorgen" dieser Betriebsanleitung.

13 Anhang

13.1 Technische Daten

Hinweis für zugelassene Geräte

Für zugelassene Geräte (z. B. mit Ex-Zulassung) gelten die technischen Daten in den entsprechenden Sicherheitshinweisen im Lieferumfang. Diese können, z. B. bei den Prozessbedingungen oder der Spannungsversorgung, von den hier aufgeführten Daten abweichen.

Alle Zulassungsdokumente können über unsere Homepage heruntergeladen werden.

Werkstoffe und Gewichte

Werkstoffe, medienberührt

Antenne, ProzessanschlussGegenmutter¹⁾PP

Prozessdichtung¹⁾
 FKM, EPDM

Werkstoffe, nicht medienberührt

Gehäuse PVDF
 Dichtung Kabeleinführung FKM
 Anschlusskabel PUB

Gewicht

- Gerät 0,7 kg (1.543 lbs)

- Anschlusskabel 0,1 kg/m

Prozessanschluss Gewinde G1½, R1½, 1½ NPT

Montageverbindung Gewinde G1, R1, 1 NPT

Eingangsgröße

Messgröße

Messgröße ist der Abstand zwischen dem Antennenrand des Sensors und der Mediumoberfläche. Der Antennenrand ist auch die Bezugsebene für die Messung.

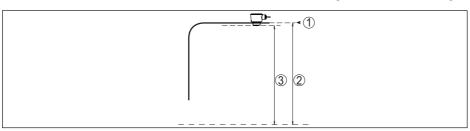


Abb. 27: Daten zur Eingangsgröße

- 1 Bezuasebene
- 2 Messgröße, max. Messbereich

Max. Messbereich¹⁾ 15 m (49.21 ft)

- 3) Nur bei G-Gewinde
- 4) Nur bei G-Gewinde, EPDM bei Gerät mit Lebensmittel-/Pharmabescheinigung
- ⁵⁾ Abhängig von Anwendung, Medium sowie Festlegungen durch messtechnische Zulassungen

Empfohlener Messbereich¹⁾ bis 10 m (32.81 ft)

Minimale Dielektrizitätszahl des Füllgu- ε ≥ 1,6

tes1)

Blockdistanz1)

- Betriebsarten 1, 2, 4 0 mm (0 in)

- Betriebsart 3 ≥ 250 mm (9.843 in)

Einschaltphase

Hochlaufzeit bei Betriebsspannung U_R < 10 s

Ausgangsgröße

Ausgangssignal SDI-12 (nur digital)

Übertragungsrate 1200 bit/s

Messauflösung digital 1 mm (0.039 in)

Datensignal

Logisch 1 0 VLogisch 0 5 V

Protokoll SDI-12: 7 Datenbits, 1 Stoppbit, gerade Parität

Ausgangsspannung

Minimum logisch 0Maximum logisch 10,8 V

Messabweichung (nach DIN EN 60770-1)

Prozess-Referenzbedingungen nach DIN EN 61298-1

- Temperatur +18 ... +30 °C (+64 ... +86 °F)

- Relative Luftfeuchte 45 ... 75 %

- Luftdruck 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

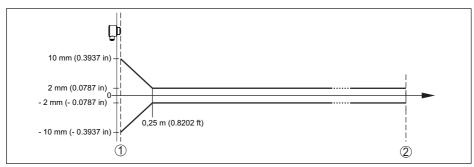
Einbau-Referenzbedingungen

Abstand zu EinbautenReflektor200 mm (7.874 in)Ebener Plattenreflektor

- Störreflexionen Größtes Störsignal 20 dB kleiner als Nutzsignal

Messabweichung bei Flüssigkeiten ≤ 2 mm (Messdistanz > 0,25 m/0.8202 ft)

Nichtwiederholbarkeit¹) ≤ 2 mm


Messabweichung bei Schüttgütern Die Werte sind stark anwendungsabhängig. Verbindliche

Angaben sind daher nicht möglich.

⁸⁾ Abhängig von den Einsatzbedingungen

⁹⁾ Bereits in der Messabweichung enthalten

< 50 mm

Abb. 28: Messabweichung unter Referenzbedingungen¹⁾

- 1 Antennenrand, Bezugsebene
- 2 Empfohlener Messbereich

Einflussgrößen auf die Messgenauigkeit

Temperaturdrift - Digitalausgang < 3 mm/10 K, max. 5 mm

Zusätzliche Messabweichung durch elektromagnetische Einstreuungen im

Rahmen der EN 61326

Messcharakteristiken und Leistungsdaten

Messfrequenz W-Band (80 GHz-Technologie)

Messzykluszeit ≤ 250 msSprungantwortzeit¹⁾ ≤ 3 sAbstrahlwinkel¹⁾ 8°

Abgestrahlte HF-Leistung (abhängig von der Parametrierung)¹⁾

Mittlere spektrale Sendeleistungs -3 dBm/MHz EIRP

dichte

- Maximale spektrale Sendeleistungs- +34 dBm/50 MHz EIRP

dichte

– Max. Leistungsdichte in 1 m Abstand < 3 μW/cm²

Umgebungsbedingungen

 Umgebungstemperatur
 -40 ... +80 °C (-40 ... +176 °F)

 Lager- und Transporttemperatur
 -40 ... +80 °C (-40 ... +176 °F)

Mechanische Umweltbedingungen

Vibrationen (Schwingungen) 4 g nach GL/E10

¹⁰⁾ Bei Abweichungen von Referenzbedingungen kann der einbaubedingte Offset bis zu ± 4 mm betragen. Dieser Offset kann durch den Abgleich kompensiert werden.

¹¹⁾ Zeitspanne nach sprunghafter Änderung der Messdistanz von 1 m auf 5 m, bis das Ausgangssignal zum ersten Mal 90 % seines Beharrungswertes angenommen hat (IEC 61298-2). Gilt bei Betriebsspannung U_B ≥ 24 V DC.

¹²⁾ Außerhalb des angegebenen Abstrahlwinkels hat die Energie des Radarsignals einen um 50 % (-3 dB) abgesenkten Pegel.

¹³⁾ EIRP: Equivalent Isotropic Radiated Power

Stöße (mechanischer Schock) Klasse 6M4 nach IEC 60271-3-6 (50 g, 2,3 ms)

Schlagfestigkeit IK07 nach IEC 62262

Prozessbedingungen

Für die Prozessbedingungen sind zusätzlich die Angaben auf dem Typschild zu beachten. Es gilt der jeweils betragsmäßig niedrigste Wert.

Prozesstemperatur -40 ... +80 °C (-40 ... +176 °F)

Prozessdruck -1 ... 3 bar (-100 ... 300 kPa/-14.5 ... 43.51 psig)

Elektromechanische Daten

Kabeleinführung Fester Anschluss

Anschlusskabel

Aufbau
 Adern, Schirmgeflecht, Mantel

Aderquerschnitt 0,5 mm² (AWG 20)
 Min. Biegeradius (bei 25 °C/77 °F) 25 mm (0.984 in)
 Durchmesser ca. 6 mm (0.236 in)
 Aderisolierung und Kabelmantel PUR (UV-beständig)

- Farbe Schwarz

- Flammwidrigkeit gemäß IEC 60332-1-2, UL 1581 (Flametest VW-1)

1

Bluetooth-Schnittstelle

Max. Teilnehmerzahl

Bluetooth-Standard Bluetooth 5.0

Frequenz 2,402 ... 2,480 GHz

Max. Sendeleistung +2,2 dBm

Reichweite typ.¹⁾ 25 m (82 ft)

Bedienung

PC/Notebook PACTware/DTM Smartphone/Tablet Bedien-App

Spannungsversorgung

Betriebsspannung U_B 8 ... 30 V DC Max. Leistungsaufnahme 200 mW

Leistungsaufnahme max. U_□ < 18 V

Low-Power-Mode 25 mWStandard Mode 100 mWVerpolungsschutz Integriert

Zulässige Restwelligkeit

- für 12 V< U_B < 18 V ≤ 0,7 V_{eff} (16 ... 400 Hz) - für 18 V< U_B < 35 V ≤ 1 V_{eff} (16 ... 400 Hz)

¹⁴⁾ Abhängig von den örtlichen Gegebenheiten

Überspannungsschutz	
Durchschlagsfestigkeit gegen metallische Montageteile	> 10 kV
Überspannungsfestigkeit (Prüfstoßspannungen 1,2/50 μs an 42 $\Omega)$	> 1000 V
Zusätzlicher Überspannungsschutz	Durch potenzialfreien Aufbau der Elektronik und um- fassende Isolationsmaßnahmen im allgemeinen nicht

erforderlich.

Elektrische Schutzmaßnahmen	
Potenzialtrennung	Elektronik potenzialfrei bis 500 V AC
Schutzart	IP66/IP68 (3 bar, 24 h) nach IEC 60529,
	Type 6P nach UL 50
Einsatzhöhe über Meeresspiegel	5000 m (16404 ft)
Schutzklasse	III
Verschmutzungsgrad	4

13.2 SDI-12 - Übersicht

SDI-12 (Serial Digital Interface bei 1200 Baud) ist ein asynchrones, serielles Datenübertragungsprotokoll. Es wird speziell für die Kommunikation zwischen Sensoren und Datenloggern zur Erfassung und Verarbeitung von Umweltdaten eingesetzt.

Im Folgenden werden die erforderlichen, gerätespezifischen Details dargestellt. Weitere Informationen zu SDI-12 finden Sie auf www.sdi-12.org.

13.3 Basic Commands

Command	Response	Description
Break	-	A data recorder starts a request by transmitting a break
a!	a <cr><lf></lf></cr>	Acknowledge Active
al!	aiicccccccmmmmmvvvxx	Send Identification:
	xx <cr><lf></lf></cr>	SDI12-compatibility number, Company Name, Sensor model number, Sensor version, Series number
aAb!	b <cr><lf></lf></cr>	Change Adress
?!	b <cr><lf></lf></cr>	Adress Query
aM!	atttn <cr><lf></lf></cr>	Start Measurement
aMC!	atttn <cr><lf></lf></cr>	Start Measurement and Request CRC
aM1! aM9!	atttn <cr><lf></lf></cr>	Additional Measurements
aMC1! aMC9!	atttn <cr><lf></lf></cr>	Additional Measurements and Request CRC
aC!	atttn <cr><lf></lf></cr>	Start Concurrent Measurement
aCC!	atttn <cr><lf></lf></cr>	Start Concurrent Measurement and Request CRC
aC1! aC9!	atttn <cr><lf></lf></cr>	Additional Concurrent Measurements
aCC1! aCC9!	atttn <cr><lf></lf></cr>	Additional Concurrent Measurements and Request CRC

Command	Response	Description
aR0! aR9!	a <values><cr><lf></lf></cr></values>	Continuous Measurements
aRC0! aRC9!	a <values><crc><cr><lf></lf></cr></crc></values>	Continuous Measurements and Request CRC
aD0! aD9!	a <values><cr><lf> or</lf></cr></values>	Send Data (M*, C*, V)
	a <values><crc><cr><lf></lf></cr></crc></values>	
aV!	attn <cr><lf></lf></cr>	Start Verification

Send Identification

Example: Address = 2, Sensor = PULSC 21, device revision = 1 and serial number = 43210123 214VEGA____PSC 2100143210123

Initial Command	Response
al!	aiicccccccmmmmmvvvxxx xxx <cr><lf></lf></cr>
	a: sensor address
	ii:SDI-12 version number (14)
	ccccccc: 8 char for vendor identification (VEGA)
	vvv: 3 char for sensor version (001)
	xxxxxxxx: 8 characters for. serial number (Ser-Nr)
	Example
	a2VEGAbbbbPSC 2100143210123 <cr><lf></lf></cr>

Start Measurement and Send Data

Command	Response	Description
aM!	atttn <cr><lf></lf></cr>	Start measurement
	a <cr><lf></lf></cr>	a: sensor address
		ttt: the time in seconds, until the sensor will have the measurement ready
		n: the number of measurement values the sensor will make and return
		a <cr><lf>: service request</lf></cr>
aD0!	a <value1><value2><value3><val< td=""><td>Send data (after aM!)</td></val<></value3></value2></value1>	Send data (after aM!)
	ue4> <value5><cr><lf></lf></cr></value5>	a: sensor address
		<value1>: stage value:pss.sss</value1>
		<value2>: distance value pdd.ddd</value2>
		<value3>: electronics temperature pttt.t</value3>
		<value4>: Measurement reliability prrr.r</value4>
		<value5>: Device status eee</value5>
		<cr><lf></lf></cr>

Measurement data and Format:

- Stage value¹⁾
 - +ss.sss (m)

¹⁵⁾ The Stage Value outputs the level/gauge above the Stage Reference

- +ss.sss (ft)
- +ssss.s (mm)
- +sss.ss (in)
- Distance
 - +dd.ddd (m)
 - +dd.ddd (ft)
 - +dddd.d (mm)
 - +ddd.dd (in)
- Electronics temperature
 - ttt.t (°C, °F, K)
- Measurement reliability
 - rrr.r (dB)
- Device status
 - eee (Errror code)

Example

Address = 0, Stage = 29,272m, Distance = 0,728m, Temperature = $25,4^{\circ}C$, reliability = 14,0 dB, Device Status = Good

Response: 0+29.272+0.728+25.4+14.0+0<CR><LF>

Address = 4, Stage = 14,887m, Distance = 0,113m, Temperature = 22,7°C, reliability = 14,0dB,

Device Status = M507 (Error in the device setting)

Response: 4+14.887+0.113+22.7+14.0+507<CR><LF>

13.4 Extended Commands

Command	Response	Description
aXRPOM!	a <value1><value2><cr><lf></lf></cr></value2></value1>	Read Power Operation Mode
aXWPOM <value1>!</value1>	a <value1><value2><cr><lf></lf></cr></value2></value1>	Write Power Operation Mode
aXRDU!	a <value1><cr><lf></lf></cr></value1>	Read distance unit
aXWDU <value1>!</value1>	a <value1><value2><cr><lf></lf></cr></value2></value1>	Write distance unit
aXRTU!	a <value1><cr><lf></lf></cr></value1>	Read temperature unit
aXWTU <value1>!</value1>	a <value1><cr><lf></lf></cr></value1>	Write temperature unit
aXRSR!	a <value1><value2><cr><lf></lf></cr></value2></value1>	Read stage reference
aXWSR <value1>!</value1>	a <value1><value2><cr><lf></lf></cr></value2></value1>	Write stage reference
aXRAPUR!	a <value1><value2><cr><lf></lf></cr></value2></value1>	Read access protection unlock result
aXRPS!	a <value1><value2><value3><val ue4><cr><lf></lf></cr></val </value3></value2></value1>	Read parametrization state
aXRAPAM!	a <value1><cr><lf></lf></cr></value1>	Read access protection active mode
aXWAPPUL <value1>!</value1>	a <value1><cr><lf></lf></cr></value1>	Write access protection parametrization lock
aXWAPPL <value1>!</value1>	a <value1><cr><lf></lf></cr></value1>	Write access protection parametrization unlock
aXWAPEC <value1>!</value1>	a <value1><cr><lf></lf></cr></value1>	Write access protection unlock with emergency code

Read Power Operation Mode

Command	Response	Description
aXRPOM!	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address
		<value1>: power operation mode, +0 = low power mode, +1 = normal power mode</value1>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
0XRPOM!	0+0 <cr><lf></lf></cr>	

Write Power Operation Mode

Command	Response	Description
aXWPOM <va- lue1>!</va- 	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address <value1>: power operation mode, +0 = low power mode, +1 = normal power model <value2>: VVO-Status eee <cr><lf></lf></cr></value2></value1>

Read distance unit

Command	Response	Description
aXRDU!	a <value1><cr><lf></lf></cr></value1>	a: sensor address
		<pre><value1>: distance unit +0 = unit in [m], +1 = unit in [ft], +2 = unit in [mm], +3 = unit in [in]</value1></pre>
		<cr><lf></lf></cr>

Write distance unit

Command	Response	Description
aXWDU <value1>!</value1>	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address
		<pre><value1>: distance unit +0 = unit in [m], +1 = unit in [ft], +2 = unit in [mm], +3 = unit in [in]</value1></pre>
		<value2>: VVO-Status +eee</value2>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
0XWDU+0!	0+0+000 <cr><lf></lf></cr>	Valid data
0XWDU+4!	0+0+136 <cr><lf></lf></cr>	No valid data
		Current value is returned with a status 136

Read temperature unit

Command	Response	Description
aXRTU!	a <value1><cr><lf></lf></cr></value1>	a: sensor address <value1>: temperature unit +0 = unit in [°C], +1 = unit in</value1>
		[F], +2 = unit in [K]
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRTU!	0+0 <cr><lf></lf></cr>	

Write temperature unit

Command	Response	Description
aXWTU <value1>!</value1>	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address
		<pre><value1>: temperature unit +0 = unit in [°C], +1 = unit in [F], +2 = unit in [K]</value1></pre>
		<value2>: VVO-Status +eee</value2>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
0XWTU+0!	0+0+000 <cr><lf></lf></cr>	Valid data
0XWDU+4!	0+0+136 <cr><lf></lf></cr>	No valid data
		Current value is returned with a status 136

Read stage reference

Command	Response	Description
aXRSR!	a <value1><cr><lf></lf></cr></value1>	a: sensor address
		<pre><value1>: stage reference +ss.sss [m], +ss.sss [ft], +ddddd [mm], sss.ss [in]</value1></pre>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRSR!	0+11.000 <cr><lf></lf></cr>	

Write stage reference

Command	Response	Description
aXWSR <value1>!</value1>	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address
		<pre><value1>: stage reference +ss.sss [m], +ss.sss [ft], +ddddd [mm], sss.ss [in]</value1></pre>
		<value2>: VVO-Status eee</value2>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRSR+10.100!	0+10.100+000 <cr><lf></lf></cr>	Valid data
aXRSR+100!	0+10.100+134 <cr><lf></lf></cr>	No valid data is written

Read access protection unlock result

Command	Response	Description
aXRAPUR!	a <value1><value2> <cr><lf></lf></cr></value2></value1>	a: sensor address
		<value1>: result, +0 = success, +1 = failed, +2 = sequence error</value1>
		<value2>: reason, +0 = without, +1 = wrong access code, +2 =</value2>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRAPUR!	0+0+0 <cr><lf></lf></cr>	

Read parameterization state

Command	Response	Description
	a <value1><value2><value3><c< td=""><td>a: sensor address</td></c<></value3></value2></value1>	a: sensor address
	R> <lf></lf>	<value1>: state, +0 = parametrization, +1 = locked</value1>
		<value2>: connection state</value2>
		<value3>: busid</value3>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRPS!	0+0+0 <cr><lf></lf></cr>	

Read access protection active mode

Command	Response	Description
aXRAPAM!	a <value> <cr><lf></lf></cr></value>	a: sensor address
		<value>: mode, +0 = none, +1 = device code</value>
		(active)
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXRAPAM!	0+1 <cr><lf></lf></cr>	

Write access protection parameterization unlock

Command	Response	Description
aXWAPPUL <va- lue1>!</va- 		a: sensor address <value1>: 6 numbers (device unlock code) <cr><lf></lf></cr></value1>

Example:

Command	Response	Description
aXWAPPUL +123456!	0+000 <cr><lf></lf></cr>	

Write access protection parameterization lock

Command	Response	Description
aXWAPPL!	a <value><cr><lf></lf></cr></value>	a: sensor address
		<value>: VVO-Status +eee</value>
		<cr><lf></lf></cr>

Example:

Command	Response	Description
aXWAPPL!	0+000 <cr><lf></lf></cr>	

Write access protection unlock with emergency code

Command	Response	Description
aXWAPEC <va- lue1>!</va- 	a <value1><cr><lf></lf></cr></value1>	a: sensor address <value1>: 10 numbers (device emergency unlock code)</value1>
		<cr><lf></lf></cr>
		<value1>: VVO-Status</value1>

Example:

Command	Response	Description
0XWAPEC +0123456789!	0+000 <cr><lf></lf></cr>	

13.5 Device-Status¹⁾

Failure

Code	DesCRiption
F013	No measured value available
F017	Adjusted span too small
F025	Error in the linearization table
F036	No executable software
F040	Error in the electronics
F080	General software error
F105	Measured value is determined
F260	Error in the calibration
F261	Error in the device setting
F264	Installation/setup error
F265	Measurement function

Maintenance

Code	Description
M500	Error in the delivery status
M501	Error in the non-active linearization table
M504	Error on an device interface
M505	No measured value available
M507	Error in the device setting
M508	Non executable Bluetooth software
M509	Software update running
M510	No communication with the main controller
M511	Inconsistent software configuration

Out of spec

Code	Description
S600	Impermissible electronics temperature
S601	Overfilling
S603	Impermissible power supply

¹⁶⁾ Value 4 with aD0!, aR0!, aRC0!, value 2 with aD0! behind aV!

Function check

Code	Description
C700	Simulation active

13.6 VVO-Status¹⁾

Code	Description
0	NO_ERROR
128	EXECUTION_ERROR
129	ACTION_NOT_IMPLEMENTED
132	INVALID_SELECTION
133	INVALID_DATA_LENGTH
134	VALUE_TOO_LARGE
134	VALUE_TOO_SMALL
136	INVALID_DATA
138	TELEGRAM_TOO_LARGE
142	DATA_NOT_AVAILABLE
143	DEVICE_BUSY
144	WRITE_PROTECTED
149	READ_ONLY
150	NOT_AUTHENTICATED

13.7 Maße

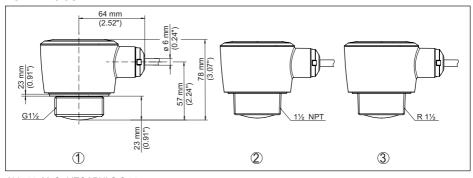


Abb. 29: Maße VEGAPULS C 22

- 1 Gewinde G11/2
- 2 Gewinde 11/2 NPT
- 3 Gewinde R1½

13.8 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

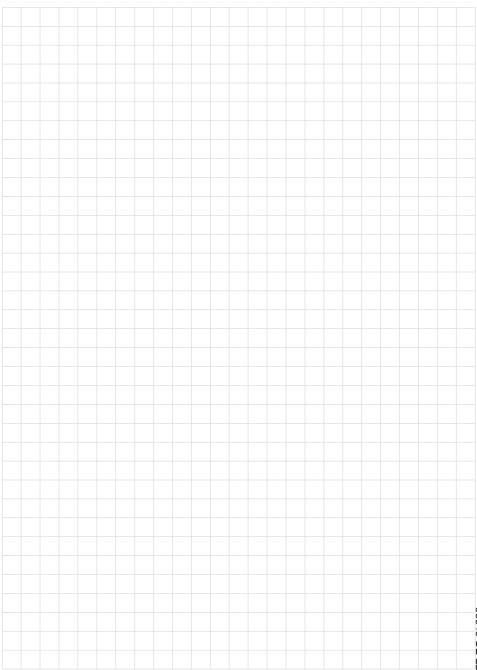
Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

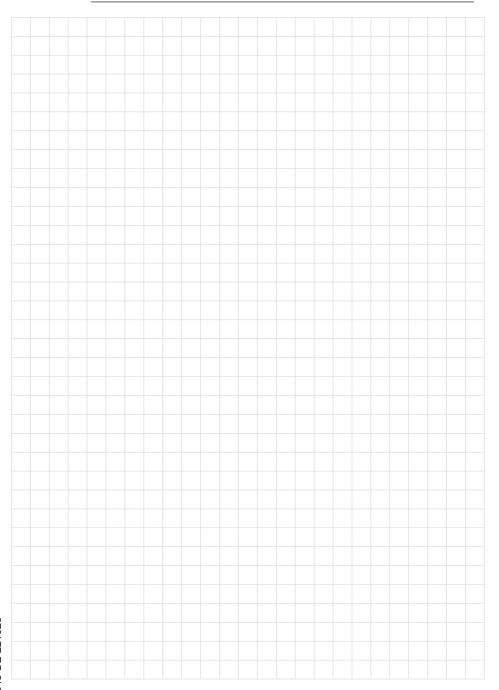
Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。


13.9 Licensing information for open source software

Open source software components are also used in this device. A documentation of these components with the respective license type, the associated license texts, copyright notes and disclaimers can be found on our homepage.


13.10 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2022