Manual de instrucciones

Separador CSB

para VEGADIF 85

Document ID: 54850

Índice

1	Acerca de este documento	_
	1.1 Función 1.2 Grupo destinatario 1.3 Simbología empleada	. 3
2	Para su seguridad	. 4 . 4
3	Descripción del producto	. 5
4	Instrucciones de proyecto para sistemas de separadores 4.1 Influencia de los componentes	. 7 . 9 12 14
5	Montaje 5.1 Condiciones de empleo 5.2 Aplicaciones de oxigeno 5.3 Instrucciones de manipulación 5.4 Instrucciones de montaje	19 19 20
6	Mantenimiento y eliminación de fallos	
7	Anexo	22 23 26 35

1 Acerca de este documento

1.1 Función

Este manual de instrucciones ofrece la información necesaria para el montaje, la conexión y la puesta en marcha, así como importantes indicaciones para el mantenimiento, la eliminación de fallos, el recambio de piezas y la seguridad del usuario. Por ello es necesario proceder a su lectura antes de la puesta en marcha y guardarlo todo el tiempo al alcance de la mano en las cercanías del equipo como parte integrante del producto.

1.2 Grupo destinatario

Este manual de instrucciones está dirigido al personal cualificado. El contenido de esta instrucción debe ser accesible para el personal cualificado y tiene que ser aplicado.

1.3 Simbología empleada

ID de documento

Este símbolo en la portada de estas instrucciones indica la ID (identificación) del documento. Entrando la ID de documento en www.vega.com se accede al área de descarga de documentos.

Información, sugerencia, nota

Este símbolo caracteriza informaciones adicionales de utilidad.

Cuidado: En caso de omisión de ese mensaje se pueden producir fallos o interrupciones.

Aviso: En caso de omisión de ese aviso se pueden producir lesiones personales y/o daños graves del dispositivo.

Peligro: En caso de omisión de ese aviso se pueden producir lesiones personales graves y/o la destrucción del dispositivo.

Aplicaciones Ex

Este símbolo caracteriza instrucciones especiales para aplicaciones Fx

Aplicaciones SIL

Este símbolo caracteriza las instrucciones para la seguridad funcional especialmente importantes para aplicaciones relevantes de seguridad.

Lista

El punto precedente caracteriza una lista sin secuencia obligatoria

→ Paso de procedimiento

Esa flecha caracteriza un paso de operación individual.

1 Secuencia de procedimiento

Los números precedentes caracterizan pasos de operación secuenciales.

Eliminación

Este símbolo caracteriza instrucciones especiales para la eliminación.

2 Para su seguridad

2.1 Personal autorizado

Todas las operaciones descritas en esta documentación tienen que ser realizadas exclusivamente por personal cualificado y autorizado por el titular de la instalación.

Durante los trabajos en y con el dispositivo siempre es necesario el uso del equipo de protección necesario.

2.2 Uso previsto

El separador es un componente funcional del transmisor de presión diferencial VEGADIE 85.

Informaciones detalladas sobre el campo de aplicación se encuentran en el capítulo " *Descripción del producto*".

La seguridad del funcionamiento del instrumento está dada solo en caso de un uso previsto según las especificaciones del manual de instrucciones, así como según como las instrucciones complementarias que pudiera haber.

2.3 Aviso contra uso incorrecto

En caso de empleo inadecuado o contrario a las prescripciones se pueden producir riesgos de aplicación específicos de este instrumento, por ejemplo, un sobrellenado de depósito o daños en las partes del instrumento a causa de montaje o ajuste erróneo.

2.4 Instrucciones generales de seguridad

Hay que atender las instrucciones de seguridad en manual de instrucciones del instrumento correspondiente.

3 Descripción del producto

3.1 Estructura

Material suministrado

El material suministrado incluye:

- Separador montado en VEGADIF 85
- Documentación
 - Este manual de instrucciones

Componentes

El sello separador CSB está formado por los componentes membrana de separación, conexión a proceso y desacoplador de temperatura. Los componentes están completamente soldados con el transmisor de presión diferencial correspondiente y representan un sistema hermético compacto.

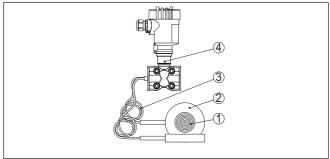


Fig. 1: VEGADIF 85 con separador CSB

- 1 Membrana de separación
- 2 Conexión a proceso
- 3 Desacoplador de temperatura
- 4 VEGADIF 85

3.2 Principio de operación

Rango de aplicación

Los separadores se emplean, cuando se necesita una separación entre el medio y el transmisor de presión, especialmente con:

- Temperaturas del medio elevadas
- Medios corrosivos
- Vibraciones fuertes en el punto de medida

Principio de funcionamiento

La presión de proceso actúa sobre la membrana de separación que transmite la presión del proceso a través de la línea capilar con un fluido de transmisión de presión al elemento sensor del transmisor de presión diferencial.r.

3.3 Embalaje, transporte y almacenaje

Embalaje

Su equipo está protegido por un embalaje durante el transporte hasta el lugar de empleo. Aquí las solicitaciones normales a causa del transporte están aseguradas mediante un control basándose en la norma DIN EN 24180.

En caso de equipos estándar el embalaje es de cartón, compatible con el medio ambiente y reciclable. En el caso de versiones especiales se emplea adicionalmente espuma o película de PE. Deseche los desperdicios de material de embalaje a través de empresas especializadas en reciclaje.

Cuidado:

Los equipos para aplicaciones de oxigeno se encuentran sellados en película de PE-y provistos con una pegatina ¡"Oxygene! Use no Oil"!. ¡Dicha pegatina solamente puede retirarse poco antes del montaje del equipo! Ver indicación en " *Montaje*".

Transporte

Hay que realizar el transporte, considerando las instrucciones en el embalaje de transporte. La falta de atención puede tener como consecuencia daños en el equipo.

Inspección de transporte

Durante la recepción hay que comprobar inmediatamente la integridad del alcance de suministros y daños de transporte eventuales. Hay que tratar correspondientemente los daños de transporte o los vicios ocultos determinados.

Almacenaje

Hay que mantener los paquetes cerrados hasta el montaje, y almacenados de acuerdo de las marcas de colocación y almacenaje puestas en el exterior.

Almacenar los paquetes solamente bajo esas condiciones, siempre y cuando no se indique otra cosa:

- No mantener a la intemperie
- Almacenar seco y libre de polvo
- No exponer a ningún medio agresivo
- Proteger de los rayos solares
- Evitar vibraciones mecánicas

Temperatura de almacenaje y transporte

- Temperatura de almacenaje y transporte ver " Anexo Datos técnicos - Condiciones ambientales"
- Humedad relativa del aire 20 ... 85 %

Levantar y transportar

Para elevar y transportar equipos con un peso de más de 18 kg (39.68 lbs) hay que servirse de dispositivos apropiados y homologados.

4 Instrucciones de proyecto para sistemas de separadores

4.1 Influencia de los componentes

Membrana de separación

Las siguientes propiedades de la membrana de separación determinan el campo de aplicación del separador:

- Diámetro
- Flexibilidad
- Material

Mientras mayor es el diámetro de membrana, mayor es la elasticidad y menor la influencia de temperatura sobre el resultado de la medición. Para mantener esa influencia dentro de límites razonables, hay que seleccionar dentro de las posibilidades el ancho nominal del separador ≥ DN 80.

La elasticidad depende además del grosor de la membrana, el material y la existencia eventual de un recubrimiento.

Capilares

El conducto capilar influye el CT_{Punto cero} a través de la longitud y el diámetro interior, la temperatura ambiente permisible y el tiempo de respuesta gradual de un sistema de separadores. Ver también el capítulo " *Influencia de la temperatura sobre el punto cero*", " *Rango de temperatura ambiente*" y " *Tiempo de respuesta gradual*".

Aceite de relleno del separador

La temperatura del medio, del ambiente y la presión de proceso son de importancia decisiva para la selección del aceite de relleno. Pero considere también las temperaturas y presiones durante la puesta en marcha y la limpieza.

Otro criterio de selección es la compatibilidad del aceite de relleno con los requisitos del medio. P. Ej. en la industria de los alimentos solamente se pueden emplear aceites inofensivos a la salud, tales como p. Ej. aceite blanco medicinal. En la tabla siguiente se encuentra un resumen de los aceites de relleno disponibles para separadores.

La tabla muestra también las temperaturas del producto autorizadas según el líquido de aislamiento y versión de equipo para p_{abs} > 1 bar/14.5 psi. Temperatura del producto para la versión de equipo para p_{abs} < 1 bar/14.5 psi véase el capítulo *Sello separador en aplicaciones de vacío*.

Aceite de relleno	Aceite de relleno Temperatura permisible del producto		Densidad en g/cm³ a 25 °C	sidad	correc- ción para	Rango de apli- cación
Aceite de silicona VE 2.2, KN 2.2	-40 +150 °C	0,96	54,5	1	Estándar	
Aceite de silicona KN 17 -90 +180 °C (- 130 +356 °F)		-90 +80 °C (- 130 +176 °F)	0,92	4,4	-	Bajas tempera- turas

Aceite de relleno	Temperatura permisible del producto	Temperatura del producto permi- sible para p _{abs} < 1 bar/14.5 psi	Densidad en g/cm³ a 25 °C	Visco- sidad cinemáti- ca en cSt a 25 °C	Factor de correc- ción para CT	Rango de apli- cación
Aceite de silicona VE 2.2, KN 2.2 y elemento de refri- geración	-40 +200 °C (- 40 +392 °F)	-40 +150 °C (- 40 +302 °F)	0,96	54,5	1	Altas tempera- turas
Aceite de al- ta temperatura VE 32, KN 32	-10 +300 °C (- 14 +572 °F)	-10 +200 °C (-	1,06	47,1	0,77	
Aceite de al- ta temperatura VE 32, KN 32	-10 +400 °C (+14 +752 °F)	14 +392 °F)				
Aceite halocarbó- nico KN 21	-40 +150 °C (- 40 +302 °F)	-90 +80 °C (- 130 +176 °F)	1,89	10,6	0,83	Aplicaciones de cloro
Aceite halocar- bónico KN 21 (Controlado BAM) 1)	-40 +60 °C (-40 +140 °F)					Aplicaciones de oxigeno
Aceite blanco me- dicinal KN 92, KN 92 (con homo- logación FDA)	-10 +150 °C ((+14 +302 °F)	0,85	45,3	0,63	Aplicaciones de alimentos
Aceite blanco medicinal KN 92, KN 92 (aprobado por la FDA) y elemento de refrigeración	-10 +250 °C (+14 +482 °F)	-10 +160 °C (+14 +320 °F)				Aplicaciones ali- mentarias, altas temperaturas
Neobee M-20 KN 59 (con homo- logación FDA)	-10 +150 °C (+14 +302 °F)		0,92	10	-	Aplicaciones de alimentos

El aceite de relleno empleado afecta también el CT_{Punto cero}, la temperatura ambiente permisible y el tiempo de respuesta del separador. Ver también el capítulo " *Influencia de la temperatura sobre el punto cero*", " *Tiempo de respuesta*".

Transmisor de presión diferencial

Igualmente el transmisor de presión diferencial influye por medio del volumen de sus bridas laterales y su volumen de control el rango de aplicación de temperatura, el CT_{Punto cero} y el tiempo de respuesta del sistema de separadores. ²⁾

- Procedimiento de limpieza si aceite y sin grasa para aplicaciones de oxígeno, presión máxima de oxígeno 50 bar (725.2 psi) conforme al ensayo del BAM (Bundesamt für Materialforschung und Prüfung: Instituto Federal para Investigación y Ensayos de Materiales de Alemania)
- El volumen de control, es el volumen que hay que desplazar, para recorrer todo el rango de medición.

4.2 Influencia de cambios de temperatura

En caso de una elevación de temperatura el aceite de relleno se dilata. El volumen adicional empuja sobre la membrana del separador. Mientras más rígida es una membrana, más se opone a una variación de volumen. La misma influye además de la presión de proceso sobre la celda de medida, desplazando de esta forma el punto cero. El coeficiente de temperatura correspondiente "CT_{Proceso}" se describe en el capítulo " *Medidas y pesos*".

Influencia de la temperatura sobre el punto cero El diagrama siguiente representa el coeficiente de temperatura en dependencia de la longitud de capilar. La temperatura de proceso equivale a la temperatura de calibración. Los coeficientes de temperatura determinados en el diagrama son válidos para aceite de silicona y el material de membrana316L. Para otros aceites hay que multiplicar esos coeficientes de temperatura con el factor de corrección para el coeficiente de temperatura (CT) del aceite de relleno correspondiente.

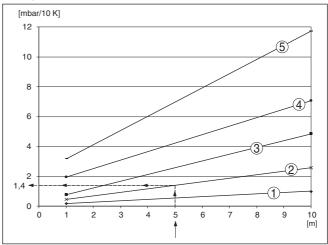


Fig. 2: Coeficiente de temperatura "CT_{Ambiente}" en dependencia de la longitud de capilar. Las curvas características 1 ... 5 se refieren a las conexiones de proceso listadas a continuación

Característica 1

Clamp 3" (ø 91 mm) según DIN 32676, ISO 2852/316L

Característica 2

- Brida EN-/DIN DN 80 PN 10-40 B1, 316L
- Brida EN-/DIN DN 100 PN 10-16 B1, 316L
- Brida EN-/DIN DN 100 PN 25-40 B1, 316L
- Brida ASME 3" 150 lbs RF. 316/316L
- Brida ASME 3" 300 lbs RF, 316/316L
- DIN 11851 DN 80 PN 25. 316L
- Tubuladuras DIN 11851 DN 80 PN 25. 316L
- Célula DN 80 PN 16-400, 316L
- Célula DN 100 PN 16-400, 316L
- Células 3" 150-2500 lbs, 316L

- Característica 3
 - Brida ASME 3" 150 lbs RF, 316/316L, Tubo: 2"/4"/6"/8"
- Característica 4
 - Brida EN-/DIN DN 50 PN 10-40 B1, 316L
 - Brida ASME 2" 150 lbs RF. 316/316L
 - Brida ASME 3" 300 lbs RF. 316/316L
 - DIN 11851 DN 50 PN 25, 316L
 - Tubuladuras DIN 11851 DN 50 PN 25, 316L
 - Célula DN 50 PN 16-400, 316L
 - Célula 2" 150-2500 lbs. 316L
- Característica 5
 - DRD DN 50 (65 mm), PN 25, 316L

Método de cálculo

- Separador: Brida EN-/DIN DN 80 PN 10-40 B1, 316L
- Longitud de capilar: 5 m
- Temperatura ambiente/convertidor de medición: 45 °C
- Aceite de relleno: Aceite de silicona

Para el cálculo proceder de la forma siguiente:

 Seleccionar la curva característica para el separador según la lista.

Resultado: curva característica 2

2. Determinar en el diagrama el valor para CT_{Ambiente} .

Resultado: 1,4 mbar/10 K

3. $T_{Ambiente}$ - $T_{Calibrada}$ = 45 °C - 25 °C = 20 °C; (1,4 mbar/10 K) • 20 K = 2,8 mbar

Resultado:

En este caso de aplicación el punto cero se desplaza en 2,8 mbar La influencia de la temperatura sobre el punto cero se puede corregir con un ajuste de posición

Reducción de la influencia de la temperatura

Para la reducción de la influencia de la temperatura existen las posibilidades siguientes:

- Un diámetro interior de capilar muy pequeño (Indicación: a medida que disminuye el diámetro aumenta el tiempo de respuesta gradual)
- Capilares cortos
- Separador con diámetro de membrana más grande
- Aceite de relleno con un coeficiente de dilatación menor.

Rango de temperatura ambiental

Las magnitudes siguientes determinan el rango de temperatura del sistema de separadores:

- Aceite de relleno
- Longitud de capilar
- Diámetro interior capilar
- Volumen de aceite del separador
- Temperatura de proceso

Los diagramas siguientes representan el rango de temperatura ambiente permisible en dependencia de la longitud de capilar. Estos son válidos para una temperatura de proceso de 25 °C y para aceite de

silicona. El rango de aplicación se puede ampliar con un aceite con menor coeficiente de dilatación y capilares más cortos.

Indicaciones:

Las ilustraciones son ejemplares en cada caso y sirven de orientación. Las temperaturas reales admisibles se deben determinar individualmente para cada aplicación.

Grupo B

- Célula 2" 150-2500 lbs, 316L
- Brida ASME 2" 150 lbs RF, 316/316L
- Brida ASME 2" 300 lbs RF, 316/316L
- Célula DN 50 PN 16-400, 316L

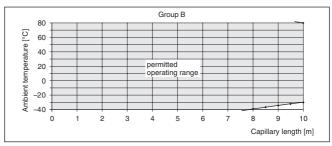


Fig. 3: Temperatura ambiente permisible en dependencia de la longitud del capilar para separadores del grupo B

Grupo C

- Brida EN-/DIN DN 80 PN 10-40 B1, 316L
- Brida EN-/DIN DN 100 PN 10-16 B1, 316L
- Brida EN-/DIN DN 100 PN 25-40 B1, 316L
- DIN 11851 DN 80 PN 25, 316L
- Célula DN 80 PN 16-400, 316L
- Célula DN 100 PN 16-400, 316L
- Célula 3" 150-2500 lbs, 316L

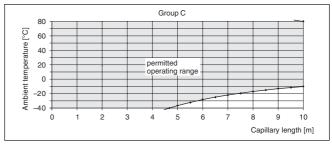


Fig. 4: Temperatura ambiente permisible en dependencia de la longitud del capilar para separadores del grupo C

Grupo D

- Brida ASME 3" 150 lbs RF, 316/316L
- Brida ASME 3" 300 lbs RF. 316/316L
- Célula 3" 150-2500 lbs, 316L

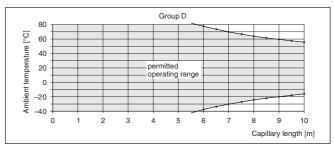


Fig. 5: Temperatura ambiente permisible en dependencia de la longitud del capilar para separadores del grupo D

Grupo E

Brida ASME 3" 150 lbs RF, 316/316L, Tubo: 2"/4"/6"/8"

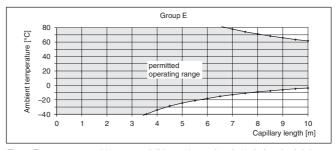


Fig. 6: Temperatura ambiente permisible en dependencia de la longitud del capilar para separadores del grupo E

Grupo F

- DRD DN 50 (65 mm), PN 25, 316L

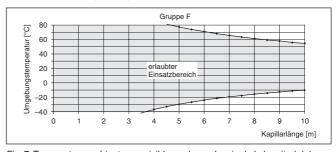


Fig. 7: Temperatura ambiente permisible en dependencia de la longitud del capilar para separadores del grupo F

4.3 Comportamiento dinámico del separador

Tiempo de respuesta gradual

La viscosidad del aceite de relleno, la longitud de capilar y el diámetro interior afectan la resistencia de rozamiento. Mientras mayor es la resistencia de rozamiento, más largo es el tiempo de respuesta gradual. Para eso el volumen de control de la celda de medida afecta el tiempo de respuesta gradual. Mientras menor es el volumen de

control de la celda de medida, más pequeño es el tiempo de respuesta gradual.

El diagrama siguiente representa tiempos de respuesta (T90) para diferentes aceites de relleno en dependencia de la celda de medida y el diámetro interior del capilar. Los valores están dados en segundos por metro de longitud de capilar y hay que multiplicarlos por la longitud real del capilar. Adicionalmente hay que considerar el tiempo de respuesta del convertidor de medición.

•

Indicaciones:

La ilustración es ejemplar y sirve de orientación. Los tiempos reales ocurridos se deben determinar individualmente para cada aplicación.

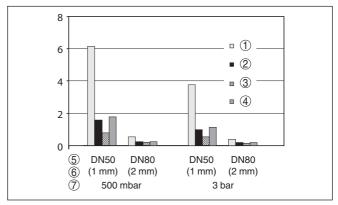


Fig. 8: Tiempos de respuesta típicos (T90) en s/m para diferentes alturas de llenado en dependencia de la celda de medida y el diámetro interior del capilar. Temperatura ambiente = 20 °C

- 1 Aceite silicónico
- 2 Aceite de alta temperatura
- 3 Aceite blanco medicinal
- 4 Aceite halocarbónico
- 5 Ancho nominal
- 6 Diámetro interior capilar
- 7 Celda de medida

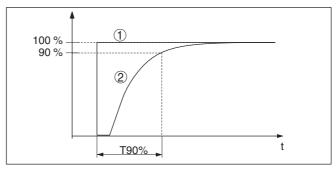


Fig. 9: Representación del tiempo de respuesta (T90)

- 1 Salto de presión
- 2 Señal de salida

Minimización del tiempo de respuesta gradual

Para la reducción del tiempo de respuesta existen las posibilidades siguientes:

- Mayor diámetro interior de capilar
- Capilares cortos
- Aceite de relleno con baja viscosidad

4.4 Posición de montaje

Aplicaciones estándar

En caso de un montaje del transmisor de presión encima del separador inferior no se puede sobrepasar la diferencia de altura máxima H1 según la figura siguiente. El valor depende de la densidad del aceite de relleno y la menor presión, que no puede aparecer jamás en el separador del lado positivo (Depósito vacío).

Valores típicos para H1 son 7 m con aceite de silicona y 4 m con aceite halocarbónico.

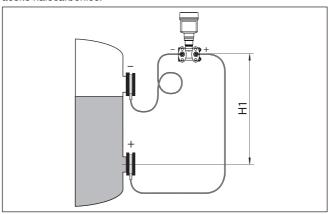


Fig. 10: Altura máxima de montaje sobre el separador inferior

Aplicaciones de vacío

En aplicaciones de vacío se debe montar el transmisor de presión a la misma altura o debajo del separador inferior. Gracias a esto se evita una carga adicional de vacío por el aceite de relleno en los capilares.

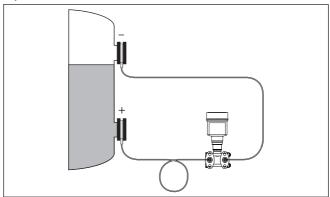


Fig. 11: Montaje preferido debajo del separador inferior

Medición de densidad

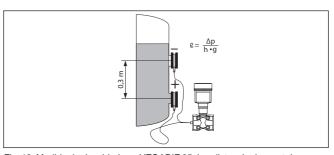


Fig. 12: Medida de densidad con VEGADIF 85, h= distancia de montaje definida, $\Delta p=$ presión diferencial, $\rho=$ densidad del medio, g= aceleración e gravedad

1 VEGADIF 85

Medición de interface

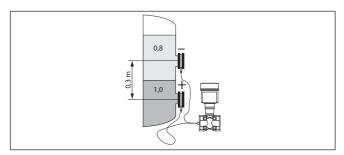


Fig. 13: Medición de interface con VEGADIF 85

- 1 VEGADIF 85
- 2 Líquido con mayor densidad
- 3 Líquido con menor densidad

4.5 Selección del rango de medición

Durante la selección de la celda de medida para equipos con separadores y capilares hay que considerar el desplazamiento del punto cero por la presión hidrostática de la columna del líquido de relleno en los capilares.

Ejemplo para la selección de la celda de medida

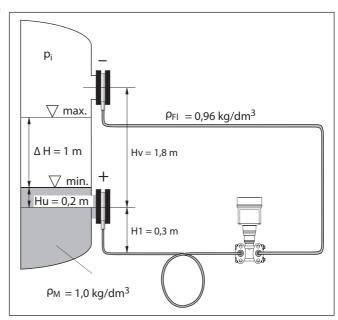


Fig. 14: Datos para la selección de la celda de medida

Presión en el lado negativo del transmisor de presión diferencial con nivel de llenado mínimo:

$$\begin{aligned} p_{.} &= p_{Hv} + p_{H1} = Hv \bullet \rho_{F1} \bullet g + H1 \bullet \rho_{F1} \bullet g + p_{i} \\ &= 1.8 \text{ m} \bullet (0.96 \text{ kg/dm}^{3} \bullet 9.81 \text{ m/s}) + 0.3 \text{ m} \bullet (0.96 \text{ kg/dm}^{3} \bullet 9.81 \text{ m/s}) \\ &+ p_{i} \\ &= 197,77 \text{ mbar} + p_{i} \end{aligned}$$

Presión en el lado positivo del convertidor de presión diferencial con nivel mínimo

$$\begin{split} & p_{_{+}} \! = \! p_{_{Hu}} + p_{_{H1}} = Hu \bullet \! p_{_{FM}} \bullet g + H1 \bullet \! p_{_{Fl}} \bullet \! g \! + \! p_{_{i}} \\ & = 0,2 \ m \bullet (1 \ kg/dm^3 \bullet 9,81 \ m/s) + 0,3 \ m \bullet (0,96 \ kg/dm^3 \bullet 9,81 \ m/s) + p_{_{i}} \\ & = 47,87 \ mbar + p_{_{i}} \end{split}$$

Presión diferencial en el convertidor de medición con nivel mínimo:

$$\Delta p_{Transmitter} = p_{+} - p_{-}$$

$$= 47,87 \text{ mbar} - 197,77 \text{ mbar}$$

$$= -149.90 \text{ mbar}$$

Presión diferencial en el convertidor de medición con nivel máximo:

$$\Delta p_{Transmisor} = p_{+} - p_{-} + \Delta H \cdot (1.0 \text{ kg/dm}^{3} \cdot 9.81 \text{ m/s})$$

= -149,90 mbar + 98,1 mbar
= -51.80 mbar

Por tanto para ese ejemplo de aplicación se necesita una celda de medida de 100 mbar.

4.6 Cálculo del error de temperatura

Variables de influencia

La influencia total de temperatura en caso de montaje de separador bilateral se compone de la forma siguiente:

- Influencia de la temperatura de proceso en el separador (CT_{Proceso})
- Factor de corrección para materiales especiales (para tántalo, Hallov: 1.5: con recubrimiento de PTFE: 1.8)
- Factor de corrección para aceite de relleno
- Influencia de la temperatura ambiente CT_{ambiente} en el transmisor de presión (variación térmica de la señal de cero y rango)

La temperatura de calibración del sistema de separadores es de 20 °C. Durante el cálculo del proceso correspondiente hay que restar la misma de la temperatura de proceso o del ambiente correspondiente.

El separador TK proceso está dado en las tablas en el capítulo *Pesos y medidas* del manual. El factor de corrección para el aceite de relleno aparece listado en el capítulo *Influencia de los componentes*". La variación térmica de la señal cero y el rango están dados en el capítulo " *Datos técnicos*" del transmisor de presión diferencial.

Información:

En el caso de montaje idéntico del separador en ambos lados, deben compensarse de forma efectiva las influencias de la temperatura . Sin embargo es evidente que se produce un error por la influencia de la temperatura. En la práctica se calcula con el 20 % de la suma

de los errores individuales de ambos transmisores. Esto también se considera en el ejemplo siguiente.

Por último, hay que sumar geométricamente los errores de temperatura del transmisor de presión y del separador en cada caso.

Ejemplo de separador bilateral:

- Temperatura de proceso 100 °C
- Separador abridado DN 80 PN 10-40
- CT proceso separador abridado: 1,34 mbar/10K (ver capítulo " Anexo" de estas instrucciones)
- Longitud de capilar: 4 m
- Aceite de relleno silicona: factor de corrección 1
- Material de la membrana: Tántalo, factor de corrección 1,5
- Temperatura ambiente TU: 40 °C
- CT_{capilares} = 0,3 mbar/10K (ver diagrama en el capítulo " *Influencia de cambios de temperatura*" o documentación de entrega)

 ΔT temperatura de proceso-temperatura de referencia sello separador

ΔT temperatura ambiente-temperatura de referencia capilares

Cantidad de separadores = 2

Calculo de error

 $\Delta p_{Separador} = (1,34 \text{ mbar/10K}) \cdot 80 \text{K} \cdot 2 = 21,44 \text{ mbar}$

Factor de corrección material de la membrana = 21,44 mbar • 1,5 = 32,16 mbar

$$\Delta p_{Capilares} = (0.3 \text{ mbar/10K}) \cdot 20 \text{K} \cdot 4 \text{ m} \cdot 2 = 4.8 \text{ mbar}$$

$$\Delta p_{Total} = 32,16 \text{ mbar} + 4,8 \text{ mbar} = 36,96 \text{ mbar}$$

El error de temperatura total del separador bilateral es, como se ha aducido arriba, de 20 % de 36.96 mbar, es decir 7.4 mbar.

5 Montaje

5.1 Condiciones de empleo

Idoneidad para las condiciones de proceso

Antes del montaje, puesta en marcha y operación tener en cuenta obligatoriamente, que tanto el transmisor de presión como el separador fueron seleccionados respecto a rango de medición, versión y material adecuadamente para las condiciones de proceso. Hay que respetar los límites de carga, para garantizar la precisión de medición especificada.

Cuidado:

Para sustancias de medición peligrosas p. Ej. oxigeno, acetileno, sustancias combustibles o tóxicas así como equipos de refrigeración, compresores etc. hay que atender las prescripciones existentes en cada caso, además de todas las regulaciones generales.

Temperatura de proceso y ambiental

En relación con la temperatura de proceso y ambiental tener en cuenta los puntos siguientes:

- Montar el transmisor de presión diferencial de forma tal, que no se sobrepasen los límites permisibles de temperatura de proceso y ambiental.
- Tener en cuenta la influencia de la convección y el calentamiento por radiación
- Durante la selección del separador asegurar la resistencia a la presión y la temperatura de las piezas de empalme y bridas
- Con este objetivo seleccionar material y escala de presión adecuados
- Realizar el montaje de forma tal que los lados positivo y negativo tengan la misma temperatura ambiente, para mantener reducidos la influencia de la temperatura

5.2 Aplicaciones de oxigeno

Aplicaciones de oxigeno

Oxigeno y otros gases pueden reaccionar explosivamente contra aceites, grasas y materiales sintéticos, de forma tal que hay que tomar entre otras la medidas siguientes:

- Todos los componentes de la planta, como por ejemplo equipos de medición, tienen que haber sido limpiados de manera que estén libres de aceite y de grasa en conformidad con los requerimientos del BAM (Instituto Federal alemán para Investigación y Ensayos de Materiales) para las aplicaciones de oxígeno
- Con aplicaciones de oxígeno no se permite exceder determinadas temperaturas y presiones máximas, ver el capítulo " Datos técnicos" y " Sello separador en aplicaciones de vacío", y tener en cuenta además el material de la junta

Peligro:

Los equipos para aplicaciones de oxigeno solamente se pueden desempaquetar de la película de PE poco antes del montaje del equipo. Después de la eliminación de la protección para la conexión al proceso es visible la marca "O2" sobre la conexión al proceso. Hay

que evitar cualquier entrada de aceite, grasa y suciedad. ¡Peligro de explosión!

5.3 Instrucciones de manipulación

- Proteger los equipos contra suciedad intensa y variaciones fuertes de la temperatura ambiente
- Mantener el sistema de medición en el embalaje hasta el montaje para la protección contra daños mecánicos
- Durante la extracción del embalaje y durante el montaje poner cuidado especial para evitar daños mecánicos y deformaciones de la membrana
- No apoyar el transmisor de presión en el tubo capilar
- No doblar los conductos capilares. Los puntos de doblado significan peligro de fuga y riesgo de aumento del tiempo de ajuste
- No zafar nunca los tornillos de llenado en el separador o en el transmisor de presión
- No dañar la membrana el separador; rasguños en la membrana del separador (p. Ej. a causa de objetos agudos) son puntos de ataque principales de corrosión

5.4 Instrucciones de montaje

Sellado

- Para el sellado hay que seleccionar juntas adecuadas
- Para el montaje de la brida, usar junta con diámetro interior suficientemente grande y poner la junta céntrica; contactos con la membrana provocan errores de medición
- En caso de empleo de juntas de elastómero o PTFE, atender las prescripciones del fabricante de juntas, especialmente respecto a par de apriete y ciclos de decantación

Tendido de capilares

- Tender libre de vibraciones, para evitar variaciones de presión adicionales
- No tender en las cercanías de tuberías de calefacción o refrigeración
- Aislar en caso de temperaturas ambiente frías o calientes
- Radio de flexión de los capilares ≥ 30 mm

6 Mantenimiento y eliminación de fallos

6.1 Mantenimiento

Mantenimiento

En caso un uso previsto, no se requiere mantenimiento especial alguno durante el régimen normal de funcionamiento.

En algunas aplicaciones las incrustaciones de producto en la membrana de separación pueden influenciar el resultado de medición. Por eso en dependencia del sensor y de la aplicación tomar precauciones para evitar incrustaciones fuertes y especialmente endurecimientos.

Cuidado:

No limpiar nunca la membrana de separación mecánicamente con objetos sólidos tales como herramientas! Esto puede causare daños en la membrana y salida del aceite de relleno.

Limpieza

En caso necesario hay que limpiar la membrana de separación con pincel/cepillo suave y agente de limpieza adecuado. Durante esta operación hay que garantizar la resistencia de los materiales contra la limpieza. La variedad de aplicaciones de separadores requiere instrucciones de limpieza especiales para cada aplicación. Con ese objetivo diríjase a nuestra representación de su competencia.

7 Anexo

7.1 Datos técnicos

Materiales

Membrana	316L, 316L recubierto de oro-rodio, aleación C276 (2.4819, tántalo, titanio, PFA, aleación 400 (2.4819), aleació 400 (2.4819) recubierto de oro-rodio, níquel
Bridas	316L, aleación 400 (2.4819) en contacto con el medio, tántalo en contacto con el medio
Capilares	316Ti
Manguera de protección para capilares	316L

Condiciones de proceso

Presión máx. de proceso., temperatura ver instrucción de servicio del sensor correspondiente máx. de proceso

Condiciones de proceso con aplicaciones de oxígeno

Temperatura máx. de proceso	Presión máx. de oxígeno		
+60 °C	50 bar		
>+60 °C hasta 100 °C	30 bar		
>+100 °C hasta 175 °C	25 bar		

Condiciones de proceso - mecánicas (fijación rígida unilateral)

Para las condiciones de proceso hay que considerar adicionalmente las especificaciones en la placa de características. Siempre se aplica el valor cuantitativo más bajo.

Resistencia a la vibración3)

Versión	Carcasa	Resistencia a la vibración
Transmisor de presión ver-	Carcasa plástica	4M5 (1 g)
tical u horizontal	Carcasa de aluminio	4NS (1 g)
	Carcasa de acero inoxidable	4M3 (0,5 g)

Resistencia a choques térmicos4)

Versión	Carcasa	Resistencia a choques térmicos		
Transmisor de presión ver-	Carcasa plástica			
tical u horizontal	Carcasa de aluminio	6M4 (10 g/11 ms, 30 g/6 ms, 50 g/2,3 ms)		
	Carcasa de acero inoxidable	3 (1.0 g; 1s, 0.0 g; 0s, 0.0 g; <u>1s</u> , 0s)		

- 3) Secuencia de prueba según IEC 60068-2-6 (5 ... 200 Hz), clasificación según IEC 60721-3-4
- 4) Geprüft gemäß IEC 60068-2-27, Klassifizierung gemäß IEC 60721-3-6

7.2 Sello separador en aplicaciones de vacío

Un sello separador está cerrado con respecto al medio con una membrana metálica. El espacio interior entre la membrana y el elemento del sensor está relleno completamente con un fluido de transmisión de presión.

Conforme baja la presión desciende la temperatura de ebullición del líquido de transmisión de presión. Así, con valores de presión < 1 bar_{abs}, dependiendo de la temperatura pueden liberarse partículas de gas que están disueltas en el líquido de transmisión de presión. Con ello se torna comprimible, lo cual da lugar a falsificaciones del valor de medición.

Por ello, los sistemas de sello separador pueden emplearse en vacío solo con restricciones dependiendo del fluido transmisor de presión, de la temperatura de proceso y del valor de presión. Para ampliar el rango de aplicación, ofrecemos opcionalmente servicio de vacío, como lo denominamos.

Los gráficos siguientes muestran rangos de aplicación típicos para diferentes fluidos transmisores de presión. Las líneas características tienen carácter ejemplar y pueden tener un desarrollo diferente dependiendo de la conexión a proceso y del material de la membrana.

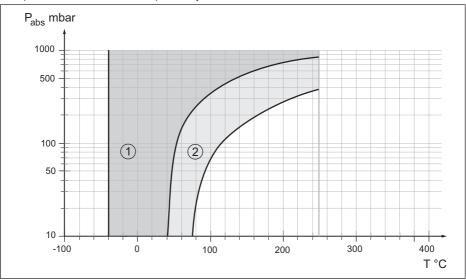


Fig. 15: Rango de aplicación para aceite de silicona VE 2.2, KN 2.2

- 1 Separador estándar
- 2 Separador con servicio de vacío

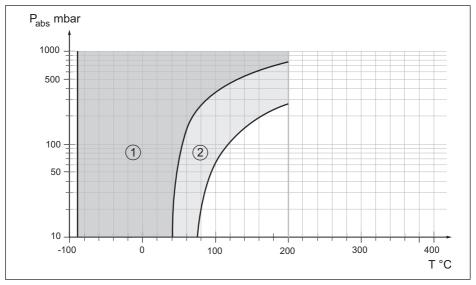


Fig. 16: Campo de aplicación para aceite de silicona KN 17

- 1 Separador estándar
- 2 Separador con servicio de vacío

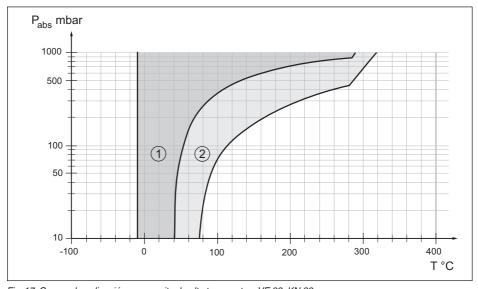


Fig. 17: Campo de aplicación para aceite de alta temperatura VE 32, KN 32

- 1 Separador estándar
- 2 Separador con servicio de vacío

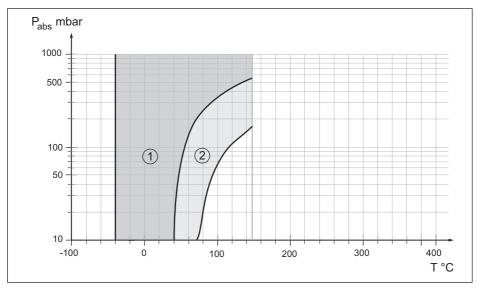


Fig. 18: Campo de aplicación para aceite halocarburado KN 21

- 1 Separador estándar
- 2 Separador con servicio de vacío

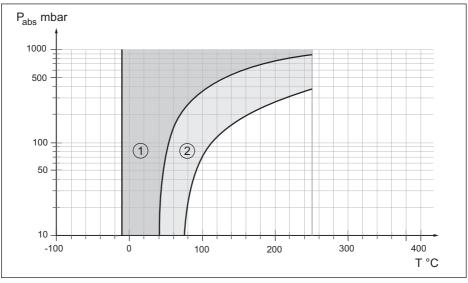


Fig. 19: Rango de aplicación para aceite blanco medicinal KN 92

- 1 Separador estándar
- 2 Separador con servicio de vacío

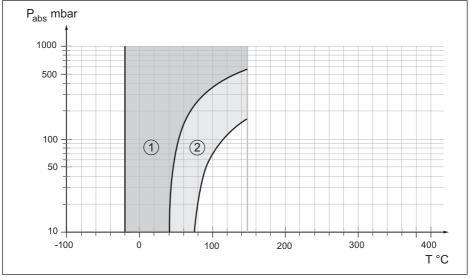


Fig. 20: Rango de aplicación para Neobee M-20 KN 59

- 1 Separador estándar
- 2 Separador con servicio de vacío

7.3 Dimensiones y pesos

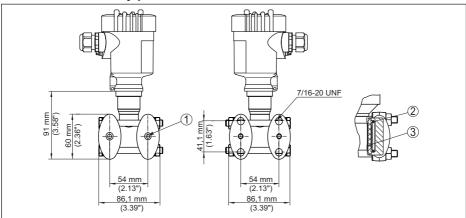


Fig. 21: llustraciones a la izquierda: Conexión de proceso VEGADIF 85 preparada para el montaje del separador. llustración de la derecha: Posición de la junta de anillo de cobre

- 1 Para el montaje del separador
- 2 Junta circular de cobre
- 3 Membrana

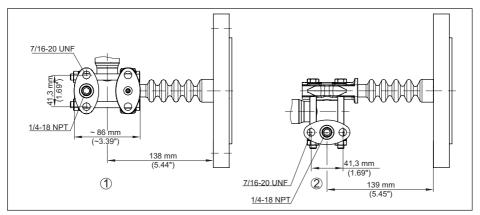


Fig. 22: Conexión a proceso VEGADIF 85 preparada para el montaje del separador. Separador montado rígidamente en el lado de alta presión

- 1 Transmisor de presión vertical (100 mm)
- 2 Transmisor de presión horizontal (100 mm)
- 3 Para el montaje del transmisor de presión lado de baja presión

En las tablas siguientes aparecen reflejados los valores típicos de los coeficientes de temperatura conjuntamente con las medidas " *CT Proceso*". Los valores son válidos para aceite de silicona y el material de membrana 316L. Para otros aceites de relleno hay que multiplicar esos valores con el factor de corrección del coeficiente de temperatura (CT) del aceite de relleno correspondiente.

La presión nominal dada es válida para el separador. La presión máxima para toda la instalación de medición depende del elemento más débil de los componentes seleccionados.

En la tabla aparecen los pesos del separador. Para el peso del separador ver también " *Medidas y pesos*" en el manual de instrucciones VEGADIF 85.

Con los dibujos siguientes se trata de dibujos esquemáticos. Las medidas reales del separador pueden diferir de esas medidas.

Separador con bridas EN

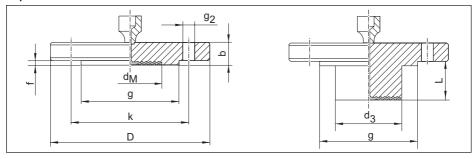


Fig. 23: Separador con brida EN, medidas de conexión según EN 1092-1

Versión	Diámetro nominal	Presión nominal	Forma	Diámetro D [mm]	Espesor b [mm]	Regleta de obtu- ración g [mm]	Largo del tubo L [mm]	Diámetro del tubo d3 [mm]
AH	DN 50	PN 40	D	165	20	102	-	-
FD	DN 50	PN 40	D	165	20	102	50	48,5
DH	DN 50	PN 40	D	165	20	102	150	48,5
FH	DN 80	PN 40	D	200	24	138	-	-
FJ	DN 80	PN 40	D	200	24	138	50	76
FK	DN 80	PN 40	D	200	24	138	100	76
FL	DN 80	PN 40	D	200	24	138	150	76
PW	DN 100	PN 40	D	220	20	158	150	94

Versión	Cantidad de taladros para tornillos	Diámetro ta- ladros para tornillos g2 [mm]	Círculo de taladros pa- ra tornillos k [mm]	Diámetro de membrana máximo dM [mm]	CT proceso [mbar/10K]	Peso de dos separadores [kg]
FC	4	18	125	59	+1,20	6,0
AH	4	18	125	47	+4,2	8,6
DH	4	18	125	47	+4,2	-
FH	8	18	160	89	+0,4	10,4
FJ	8	18	160	72	+1,34	-
FK	8	18	160	72	-	-
FL	8	18	160	72	-	-
PW	8	18	190	89	+0,4	13,4

Separador con brida ASME



Fig. 24: Separador con brida ASME, medidas de conexión según B16.5, regleta de obturación RF

Versión	Diámetro nominal ["]	Class [lb] [sq.in]	Diámetro D [in][mm]	[in][mm]	Regleta de obturación g [in][mm]		Diámetro del tubo d3 [in][mm]
F5	2	150	6 (150)	0.75 (20)	3.62 (92)	-	-

Versión	Diámetro nominal ["]	Class [lb] [sq.in]	Diámetro D [in][mm]	Espesor b [in][mm]	Regleta de obturación g [in][mm]	Largo del tubo L [in] [mm]	Diámetro del tubo d3 [in][mm]
F7	2	150	6 (150)	0.75 (20)	3.62 (92)	2 (50)	1.9 (48,3)
FS	3	150	7.5 (190)	0.94 (24)	5 (127)	-	-
EW	3	150	7.5 (190)	0.94 (24)	5 (127)	2 (50)	2.9 (73,7)

Versión	Cantidad de taladros para tornillos	Diámetro ta- ladros para tornillos g2 [in][mm]	Círculo de taladros pa- ra tornillos k [in][mm]	Diámetro de membrana máximo dM [in][mm]	CT proceso [mbar/10K]	Peso [kg]
F5	4	0.75	4.75	2.32	+1,20	2.7
		20	120,5	59		
F7	4	0.75	4.75	1.85	-	3.7
		20	120,5	47		
FS	4	0.75	6	3.50	+0,4	5.3
		20	152,5	89		
EW	4	0.75	6	2.83	+1.34	6.3
		20	152,5	72		

Separador tubular con brida ANSI

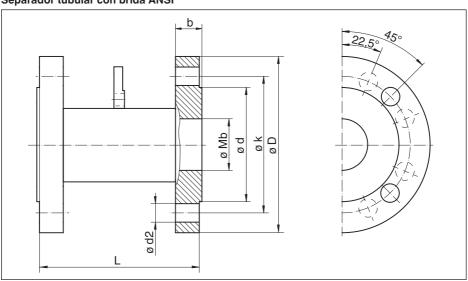


Fig. 25: Separador tubular con brida ANSI, medidas de conexión según EN 1092-1

Versión	Diámetro nominal	Presión no- minal	Forma	Diámetro D [mm]	[mm]	Regleta de obturación g [mm]	
RB	DN 40	PN 40	D	150	18	88	146

Versión	taladros para		taladros pa-	Diámetro de membrana dM [mm]		Peso de dos separadores [kg]
RB	4	18	110	43	-	-

Los siguientes dibujos son de tipo general. Esto significa que las dimensiones de un separador suministrado pueden variar respecto a las dimensiones indicadas.

Separador con Clamp

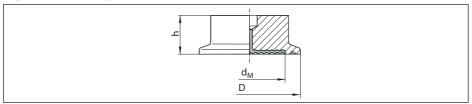


Fig. 26: Separador con Clamp según ISO 2852

'	/ersión	Diámetro nominal	Presión no- minal		Diámetro de mem- brana dM [mm]		CT proceso [mbar/10K]	
(СВ	DN 40	PN 10	64	35	20	±0,44	0,5

Sello separador con conexión aséptica con tuerca de unión ranurada

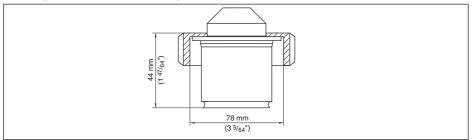


Fig. 27: Sello separador con conexión aséptica con tuerca de unión ranurada

Versión	Presión nominal	CT proceso [mbar/10K]	Peso de dos separado- res [kg]
LA	PN 40	±0,44	0,5

Sello separador con conexión Varivent

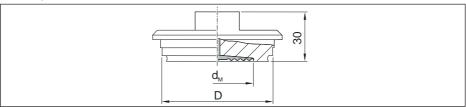


Fig. 28: Sello separador con conexión Varivent tipo N para tubos

Versión	Diámetro no- minal	Presión no- minal	[mm]	Diámetro de membrana dM [mm]	[mbar/10K]	Peso de dos separa- dores [kg]
TA	DN 40 DN 162	PN 25	68	34	±0,56	1,6

Sello separador con racor roscado según DIN 11851

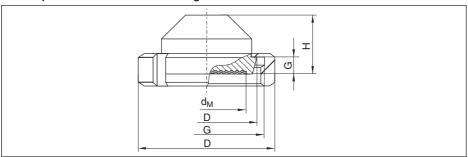


Fig. 29: Sello separador con racor roscado según DIN 11851 (versión de tubuladura cónica con tuerca de unión ranurada)

Versión	Diá- metro nomi- nal	Presión nomi- nal	Diáme- tro D [mm]	Diáme- tro de mem- brana dM [mm]	Ros- ca de tuerca ranura- da G	Altura tuerca ranu- rada m [mm]		CT proceso [mbar/10K]	Peso de dos separa- dores [kg]
RW	DN 50	PN 25	68,5	52	Rd 78x1/6"	19	11	±1,23	2,2
RX	DN 80	PN 25	100	81	Rd 110x1/4"	26	12	±0,34	4,1

Transmisor con conexión DRD

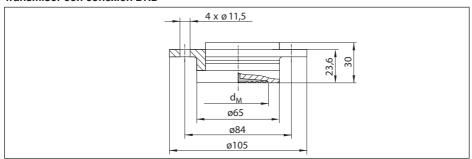


Fig. 30: Transmisor con conexión DRD

Versión	Diámetro de mem- brana dM [mm]	Presión nominal	•	Peso de dos sepa- radores [kg]
DW	65	PN 25	±0,20	1,5

Separador con conexión SMS

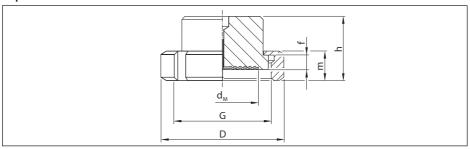


Fig. 31: Separador con conexión SMS 2" DN 51

Versión	Diá- metro nomi- nal	Presión nomi- nal	Diá- metro tuerca ranu- rada m [mm]	Diáme- tro de rosca G [mm]	Diáme- tro de mem- brana dM [mm]	Altura tuerca ranu- rada m [mm]	Altura del so- porte f [mm]	CT proceso [mbar/10K]	Peso de dos separa- dores [kg]
SB	2"	PN 6	74	Rd 60 - 1/6	36	25	57	±0,18	1,3
SC	3"	PN 6	84	Rd 70 - 1/6	48	26	62	±0,18	2,1

Separador celular

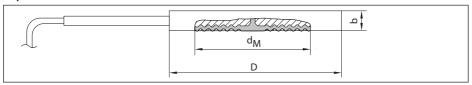


Fig. 32: Separador en forma de célula

Versión	Diá- metro nomi- nal	Presión nomi- nal	Diáme- tro d [mm]	Diáme- tro de mem- brana dM [mm]	Altura b [mm]	Largo del tu- bo L [in] [mm]	Diáme- tro del tubo d3 [in][mm]	CT proceso [mbar/10K]	Peso de dos separa- dores [kg]
AA	DN 50	PN 16- 400	102	59	20-22	-	-	±0,30	2,6
AQ	DN 80	PN 16- 400	138	89	20-22	-	-	±0,06	4,6
ZH	DN 80	PN 16- 400	138	89	20-22	350	76	-	5,6
AR	DN 100	PN 16- 400	138	89	20-22	-	-	±0,06	4,6

Versión	Diá- metro nominal [in]	Class [lb][sq. in]	Diáme- tro d [in] [mm]	Diáme- tro de mem- brana dM [in] [mm]	Altu- ra b [in] [mm]	Largo del tu- bo L [in] [mm]	Diáme- tro del tubo d3 [in][mm]	CT proceso [mbar/10K]	Peso de dos separa- dores [kg]
CA	2	150- 2500	3,91	2,32	0,792	-	-	±0,30	2,6
		2500	102	59	20				
CK	3	3 150-	5,28	3,50	0,792	-	-	±0,06	4,6
		2500	138	89	20				

Sello separador con conexión para alimentación de pasta

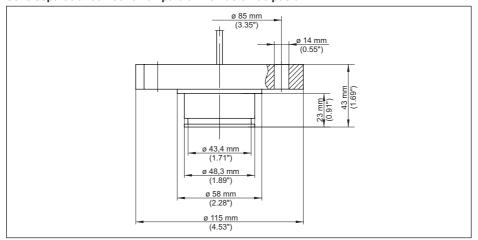


Fig. 33: Sello separador con conexión para alimentación de pasta según ZG 2976, aplanado por ambos lados

Versión	Tamaño de bri- da	Presión nomi- nal	Diáme- tro d [mm]	Diáme- tro de mem- brana dM [mm]	Altura b [mm]	Largo del tu- bo L [in] [mm]	tro del	CT proceso [mbar/10K]	Peso de dos separa- dores [kg]
A1	DN 25	sin indi- cación PN	102	59	20	23	48	±0,30	2,6

7.4 Derechos de protección industrial

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

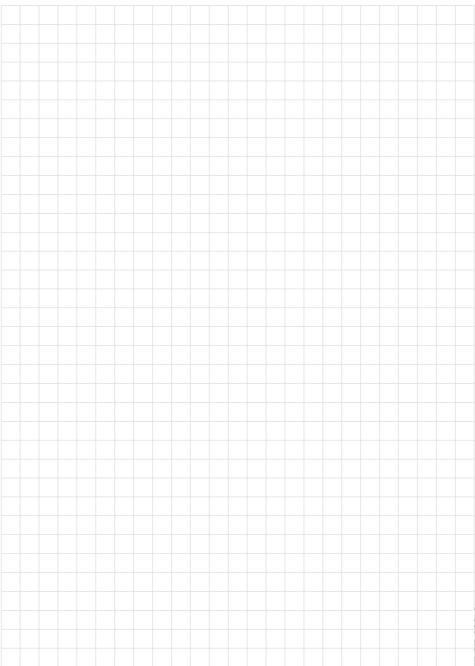
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

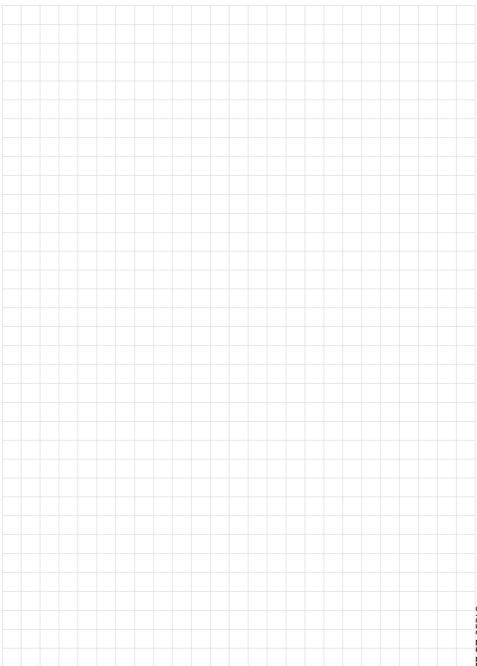
Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

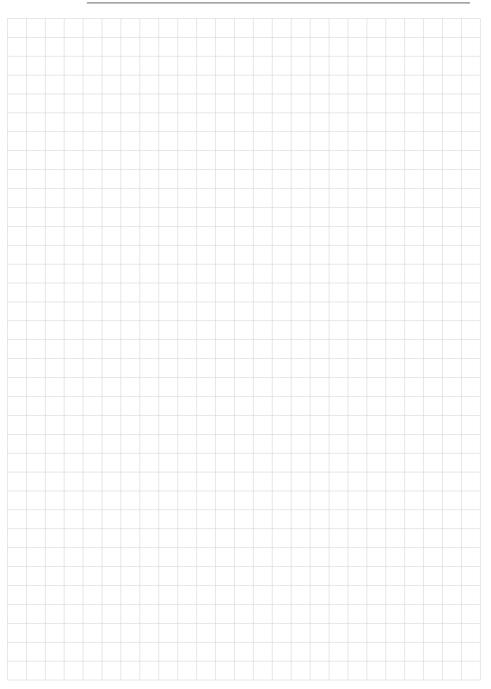
Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.


VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。


7.5 Marca registrada

Todas las marcas y nombres comerciales o empresariales empleados pertenecen al propietario/autor legal.



Fecha de impresión:

Las informaciones acera del alcance de suministros, aplicación, uso y condiciones de funcionamiento de los sensores y los sistemas de análisis corresponden con los conocimientos existentes al momento de la impresión.

Reservado el derecho de modificación

© VEGA Grieshaber KG, Schiltach/Germany 2022

 ϵ