Instrucciones de servicio

Transmisor de presión diferencial con membrana de medición metálica

Protocolo Modbus y Levelmaster

Document ID: 53571

Índice

1	Acer	ca de este documento	. 4
	1.1	Función	. 4
	1.2	Grupo destinatario	. 4
	1.3	Simbologia empleada	. 4
2	Para	su seguridad	. 5
	2.1	Personal autorizado	. 5
	2.2	Uso previsto	. 5
	2.3	Aviso contra uso incorrecto	.5
	2.4 2.5	Conformidad	. Э 6
	2.6	Becomendaciones NAMUB	. 6
	2.7	Instrucciones acerca del medio ambiente	. 6
3	Desc	rinción del producto	7
5	3 1	Fetructura	- 7
	3.2	Principio de operación	. /
	3.3	Procedimiento de limpieza adicional	11
	3.4	Embalaje, transporte y almacenaje	11
	3.5	Accesorios	12
4	Mont	aie	13
	4.1	Instrucciones generales	13
	4.2	Instrucciones para las aplicaciones de oxigeno	15
	4.3	Enlace al proceso	15
	4.4	Instrucciones de montaje y conexión	16
	4.5	Configuraciones de medición	18
5	Cone	ctar a la tensión de alimentación y al sistema de bus	28
	5.1	Preparación de la conexión	28
	5.2	Conexión	29
	5.3	Esquema de conexión	31
	5.4	Carcasa externa con versión IP68 (25 bar)	32
	5.5	Fase de conexion	34
6	Pone	r en marcha el sensor con el módulo de visualización y configuración	35
	6.1	Colocar el módulo de visualización y configuración	35
	6.2	Sistema de configuración	36
	6.3 6.4	Visualización del valor de medición.	37
	0.4 6.5	Parametrización - Ajusta ampliado	30 38
_	0.0		
1	Confi	gurar la interface del sensor y Modbus con PAC Iware	55
	7.1	Conectar el PC	55
	7.2	Aiustar la dirección del equipo	20 57
	7.0	Guardar datos de parametrización	57 58
0	Dene		50
0		r en runcionamiento el dispositivo de medición	59 50
	ຽ.1 ຊຸງ	Nedición de fluio	59 61
_	0.2		-
9	Diagr	nostico, asset management y servicio	63
9	9.1	Mantenimiento	63

	9.2	Memoria de diagnóstico	63
	9.3	Función Asset-Management	64
	9.4	Eliminar fallos	67
	9.5	Recambio de bridas de proceso	67
	9.6	Cambiar módulo de proceso con versión IP68 (25 bar)	69
	9.7	Cambiar módulo electrónico	70
	9.8	Actualización del software	70
	9.9	Procedimiento en caso de reparación	70
10	Desm	nontaie	72
	10.1	Pasos de desmontaie	72
	10.1	Fliminar	72
	10.2		12
11	Anex	0	73
	11.1	Datos técnicos	73
	11.2	Comunicación del equipo Modbus	82
	11.3	Registro Modbus	83
	11.4	Modbus instrucciones RTU	85
	11.5	Instrucciones Levelmaster	88
	11.6	Configuración de un host Modbus típico	91
	11.7	Cálculo de la desviación total	91
	11.8	Cálculo de la desviación total - Ejemplo práctico	92
	11.8 11.9	Cálculo de la desviación total - Ejemplo práctico Dimensiones, versiones, módulos de proceso	92 93
	11.8 11.9 11.10	Cálculo de la desviación total - Ejemplo práctico Dimensiones, versiones, módulos de proceso Derechos de protección industrial	92 93 96
	11.8 11.9 11.10 11.11	Cálculo de la desviación total - Ejemplo práctico Dimensiones, versiones, módulos de proceso Derechos de protección industrial Marca registrada	92 93 96 96

53571-ES-230822

Instrucciones de seguridad para zonas Ex: En caso de aplicaciones Ex atender las instrucciones de seguridad

específicas Ex. Las mismas están anexas en forma de documentación en cada instrumento con homologación Ex y forman parte del manual de instrucciones.

Estado de redacción: 2023-08-04

1 Acerca de este documento

1.1 Función

Las presentes instrucciones ofrecen la información necesaria para el montaje, la conexión y la puesta en marcha, así como importantes indicaciones para el mantenimiento, la eliminación de fallos, la seguridad y el recambio de piezas. Por ello es necesario proceder a su lectura antes de la puesta en marcha y guardarlas en todo momento al alcance de la mano en las proximidades inmediatas del equipo como parte integrante del producto.

1.2 Grupo destinatario

Este manual de instrucciones está dirigido al personal cualificado. El contenido de esta instrucción debe ser accesible para el personal cualificado y tiene que ser aplicado.

1.3 Simbología empleada

ID de documento

Este símbolo en la portada de estas instrucciones indica la ID (identificación) del documento. Entrando la ID de documento en <u>www.vega.com</u> se accede al área de descarga de documentos.

Información, indicación, consejo: Este símbolo hace referencia a información adicional útil y consejos para un trabajo exitoso.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar daños personales.

Atención: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Peligro: El incumplimiento de las indicaciones marcadas con este símbolo puede causar lesiones graves o incluso la muerte.

Aplicaciones Ex

Este símbolo caracteriza instrucciones especiales para aplicaciones Ex.

Lista

El punto precedente caracteriza una lista sin secuencia obligatoria

1 Secuencia de procedimiento

Los números precedentes caracterizan pasos de operación secuenciales.

Eliminación

Este símbolo caracteriza instrucciones especiales para la eliminación.

2 Para su seguridad

2.1 Personal autorizado

Todas las operaciones descritas en esta documentación tienen que ser realizadas exclusivamente por personal cualificado y autorizado.

Durante los trabajos en y con el dispositivo siempre es necesario el uso del equipo de protección necesario.

2.2 Uso previsto

El VEGADIF 85 es un equipo para la medición de flujo, nivel, presión diferencial, densidad e interfase.

Informaciones detalladas sobre el campo de aplicación se encuentran en el capítulo " *Descripción del producto*".

La seguridad del funcionamiento del instrumento está dada solo en caso de un uso previsto según las especificaciones del manual de instrucciones, así como según como las instrucciones complementarias que pudiera haber.

2.3 Aviso contra uso incorrecto

En caso de un uso inadecuado o no previsto de este equipo, es posible que del mismo se deriven riegos específicos de cada aplicación, por ejemplo un rebose del depósito debido a un mal montaje o mala configuración. Esto puede tener como consecuencia daños materiales, personales o medioambientales. También pueden resultar afectadas las propiedades de protección del equipo.

2.4 Instrucciones generales de seguridad

El equipo se corresponde con el nivel del desarrollo técnico bajo consideración de las prescripciones y directivas corrientes. Solo se permite la operación del mismo en un estado técnico impecable y seguro. La empresa operadora es responsable de una operación sin fallos del equipo. En caso de un empleo en medios agresivos o corrosivos en los que un mal funcionamiento del equipo puede dar lugar a posibles riesgos, la empresa operadora tiene que asegurarse de la corrección del funcionamiento por medio de medidas apropiadas.

Hay que observar las indicaciones de seguridad de este manual de instrucciones, las normas de instalación específicas del país y las normas de seguridad y de prevención de accidentes vigentes.

Por razones de seguridad y de garantía, toda manipulación que vaya más allá de lo descrito en el manual de instrucciones tiene que ser llevada a cabo exclusivamente por parte de personal autorizado por nosotros. Están prohibidas explícitamente las remodelaciones o los cambios realizados por cuenta propia. Por razones de seguridad, solo se permite el empleo de los accesorios mencionados por nosotros.

Para evitar posibles riesgos, hay que atender a los símbolos e indicaciones de seguridad puestos en el equipo.

2.5 Conformidad

El equipo cumple los requisitos legales de las directivas o reglamentos técnicos específicos de cada país. Certificamos la conformidad con la marca correspondiente.

Las declaraciones de conformidad correspondientes están en nuestra página web.

2.6 Recomendaciones NAMUR

NAMUR es la sociedad de intereses técnica de automatización en la industria de procesos en Alemania. Las recomendaciones NAMUR editadas se aplican en calidad de estándar en la instrumentación de campo.

El equipo cumple las requisitos de las recomendaciones NAMUR siguientes:

- NE 21 Compatibilidad electromagnética de medios de producción
- NE 53 Compatibilidad con equipos de campo y componentes de indicación y ajuste
- NE 107 Autovigilancia y diagnóstico de equipos de campo

Para otras informaciones ver www.namur.de.

2.7 Instrucciones acerca del medio ambiente

La protección de la base natural de vida es una de las tareas más urgentes. Por eso hemos introducido un sistema de gestión del medio ambiente, con el objetivo de mejorar continuamente el medio ambiente empresarial. El sistema de gestión del medio ambiente está certificado por la norma DIN EN ISO 14001.

Ayúdenos a satisfacer esos requisitos, prestando atención a las instrucciones del medio ambiente en este manual:

- Capitulo " Embalaje, transporte y almacenaje"
- Capitulo " Reciclaje"

3 Descripción del producto

3.1 Estructura

Material suministrado

- El material suministrado incluye:
- Transmisor de presión VEGADIF 85
- Válvulas de purga, tapones roscados- según versión (ver capítulo "Dimensiones")

El resto del material suministrado comprende:

- Documentación
 - Guía rápida VEGADIF 85
 - Certificado de control para el transmisor de presión
 - Instrucciones para equipamientos opcionales
 - "Instrucciones de seguridad" especificas EX (para versiones Ex)
 - Otras certificaciones en caso necesario

Información:

En el manual de instrucciones también se describen las características técnicas, opcionales del equipo. El volumen de suministro correspondiente depende de la especificación del pedido.

Ámbito de vigencia de este manual de instrucciones

El manual de instrucciones siguiente es válido para las versiones de equipos siguientes:

- Hardware a partir de la versión 1.0.0
- Software a partir de la versión 1.3.4

Indicaciones:

Encontrará la versión de hardware y de software del equipo como se indica a continuación:

- En la placa de tipos del módulo electrónico
- En el menú de configuración bajo " Info"

Placa de tipos

La placa de caracteristicas contiene los datos más importantes para la identificación y empleo del instrumento.

- Tipo de instrumento
- Información sobre aprobaciones
- Informaciones para la configuración
- Datos técnicos
- Número de serie de los equipos
- Código QR para la identificación del equipo
- Código numérico para el acceso Bluetooth (opcional)
- Información del fabricante

Documentos y software

Existen las siguientes posibilidades para encontrar datos de pedido, documentos o software relativos a su equipo:

- Vaya a "<u>www.vega.com</u>" e introduzca el número de serie de su equipo en el campo de búsqueda.
- Escanee el código QR en la placa de características.

 Abra la VEGA Tools app e introduzca el número de serie en " Documentación". 3.2 Principio de operación Rango de aplicación VEGADIF 85 es adecuado universalmente para aplicaciones en casi todos los sectores industriales. Se emplea para la medición de los siguientes tipos de presión: Presión diferencial Presión estática Productos a medir Medios de medición son gases, vapores y líquidos. Magnitudes de medición La medición de presión diferencial permite la medición de: • Nivel Flujo Presión diferencial Densidad Capa de separación Medición de nivel El equipo es apropiado para la medición de nivel dentro de depósitos cerrados presurizados. La presión estática es compensada por medio de la medición de presión diferencial. En las salidas digitales

Fig. 1: Medición de nivel con VEGADIF 85 en un depósito presurizado

Medición de flujo

La medida de caudal tiene lugar por medio de un transductor de presión diferencial, como diafragma de medición o tubo pitot. El equipo registra la diferencia de presión que se produce y convierte el valor de medición en caudal. La presión estática está disponible en las salidas digitales de señal como valor de medición separado.

Fig. 2: Medición de caudal con VEGADIF 85 y diafragma de medición, Q = caudal, presión diferencial $\Delta p = p_1 - p_2$

Las presiones en dos tuberías son tomadas mediante líneas de presión efectiva. El equipo determina la presión diferencial.

Fig. 3: Medición de la presión diferencial en tuberías con VEGADIF 85, presión diferencial $\Delta p = p_1 - p_2$

Medición de densidad En un depósito con nivel cambiante y distribución homogénea de densidad, es posible llevar a cano una medición de densidad con el equipo. La conexión al depósito tiene lugar por medio de sello separador en dos puntos de medición.

Fig. 4: Medición de densidad con VEGADIF 85

Medición de presión diferencial

Medición de interface

En un depósito con nivel cambiante es posible llevar a cabo una medición de interfase con el equipo. La conexión al depósito tiene lugar por medio de sello separador en dos puntos de medición.

Fig. 5: Medición de interface con VEGADIF 85

Principio de funciona-
mientoComo elemento sensor se utiliza una celda de medición metálica.
Las presiones de proceso son transmitidas a través de las membra-
nas de separación y los aceites de relleno a un elemento de sensor
piezorresistivo (puente de medición de resistencias en tecnología de
semiconductores).

La diferencia de las presiones aplicadas modifica la tensión del puente. Ésta se mide, se procesa y se transforma en una correspondiente señal de salida.

Cuando se exceden los límites de medición, un sistema de sobrecarga protege el elemento de sensor contra posibles daños.

Además se mide la temperatura de la celda de medida y la presión estática en el lado de baja presión. Las señales de medición son procesadas y están disponibles entonces como señales adicionales de salida.

Fig. 6: Estructura de la celda de medición metálica

- 1 Fluido de llenado
- 2 Sensor de temperatura
- 3 Sensor de presión absoluta presión estática
- 4 Sistema de sobrecarga
- 5 Sensor de presión diferencial
- 6 Membrana de separación

3.3 Procedimiento de limpieza adicional

El VEGADIF 85 está disponible también en la versión " *Libre de aceite, grasa y silicona*". Esos equipos han sido sometidos a un proceso de limpieza especial para la eliminación de aceites, grasas y otras sustancias que impiden la humidificación de lacas

La limpieza se realiza en todas las piezas en contacto con el proceso así como en las superficies accesibles desde el exterior. Para mantener el grado de pureza se realiza un embalaje cuidadoso en película plástica después del proceso de limpieza. El grado de pureza se conserva mientras el instrumento se mantenga en el embalaje original.

El VEGADIF 85 no se puede emplear en esta versión en aplicaciones de oxigeno. Para ello hay disponibles equipos de modelos especiales "*Libre de aceite, de grasa y de silicona para para aplicaciones de oxigeno*".

3.4 Embalaje, transporte y almacenaje

Su equipo está protegido por un embalaje durante el transporte hasta el lugar de empleo. Aquí las solicitaciones normales a causa del transporte están aseguradas mediante un control basándose en la norma DIN EN 24180.

El embalaje exterior es de cartón, compatible con el medio ambiente y reciclable. En el caso de versiones especiales se emplea adicionalmente espuma o película de PE. Deseche los desperdicios de material de embalaje a través de empresas especializadas en reciclaje.

Cuidado:

Los equipos para aplicaciones de oxigeno se encuentran sellados en película de PE-y provistos con una pegatina ¡"Oxygene! Use no Oil"!. ¡Dicha pegatina solamente puede retirarse poco antes del montaje del equipo! Ver indicación en " *Montaje*".

- TransporteHay que realizar el transporte, considerando las instrucciones en
el embalaje de transporte. La falta de atención puede tener como
consecuencia daños en el equipo.
- Inspección de transporte Durante la recepción hay que comprobar inmediatamente la integridad del alcance de suministros y daños de transporte eventuales. Hay que tratar correspondientemente los daños de transporte o los vicios ocultos determinados.
- Almacenaje

Embalaje

Hay que mantener los paquetes cerrados hasta el montaje, y almacenados de acuerdo de las marcas de colocación y almacenaje puestas en el exterior.

Almacenar los paquetes solamente bajo esas condiciones, siempre y cuando no se indique otra cosa:

- No mantener a la intemperie
- Almacenar seco y libre de polvo
- No exponer a ningún medio agresivo
- Proteger de los rayos solares

	Evitar vibraciones mecánicas
Temperatura de almace- naje y transporte	 Temperatura de almacenaje y transporte ver " Anexo - Datos técni- cos - Condiciones ambientales" Humedad relativa del aire 20 85 %
Levantar y transportar	Para elevar y transportar equipos con un peso de más de 18 kg (39.68 lbs) hay que servirse de dispositivos apropiados y homologa- dos.
	3.5 Accesorios
	Las instrucciones para los accesorios mencionados se encuentran en el área de descargas de nuestra página web.
Módulo de visualización y configuración	El módulo de visualización y configuración sirve para la indicación del valor de medición, para la configuración y para el diagnóstico. El módulo Bluetooth integrado (opcional) permite el ajuste inalámbri- co a través de equipos de configuración estándar.
VEGACONNECT	El adaptador de interface VEGACONNECT permite la conexión de dispositivos con capacidad de comunicación a la interface USB de un PC.
Adaptador VEGADIS	El adaptador VEGADIS es un accesorio para sensores con carcasa de dos cámaras. Posibilita la conexión de VEGADIS 81 a la carcasa del sensor a través de un conector M12 x 1.
Cubierta protectora	La tapa protectora protege la carcasa del sensor contra suciedad y fuerte calentamiento por radiación solar.
Accesorios de montaje	Los accesorios de montaje para VEGADIF 85 comprenden adaptador de brida oval, bloques de válvulas y brazo de soporte.
Separador	Mediante el montaje de separadores, el VEGADIF 85 puede emplear- se también con medios corrosivos, de alta viscosidad y calientes.

Condiciones de

proceso

4 Montaje

4.1 Instrucciones generales

Indicaciones:

El dispositivo debe ser operado por razones de seguridad sólo dentro de las condiciones de proceso permisibles. Las especificaciones respectivas se encuentran en el capítulo "*Datos técnicos*" del manual de instrucciones o en la placa de tipos.

Asegurar antes del montaje, que todas las partes del equipo que se encuentran en el proceso, sean adecuadas para las condiciones de proceso existentes.

Estos son principalmente:

- Pieza de medición activa
- Conexión a proceso
- Junta del proceso

Condiciones de proceso son especialmente

- Presión de proceso
- Temperatura de proceso
- Propiedades químicas de los productos
- Abrasión e influencias mecánicas

Presión de proceso per-El rango permitido de presión de proceso se indica con "MWP" mitida (MWP) (Maximum Working Pressure) en la placa de características, ver capítulo " Estructura". El dato se refiere a una temperatura de referencia de +25 °C (+76 °F). El MWP puede darse unilateralmente de forma permanente. Para que no se produzca ningún daño en el aparato, una presión de prueba que actúa a ambos lados sólo puede exceder el rango MWP brevemente 1,5 veces a la temperatura de referencia. Allí están considerados los niveles de presión de la conexión de proceso y la capacidad de carga de la celda de medida (ver capítulo " Datos técnicos"). Además, una reducción de temperatura de la unión al proceso, p.ej. con sellos separadores de brida, puede restringir el rango permitido de presión de proceso conforme a la norma correspondiente. Protección contra hume-Proteja su instrumento a través de las medidas siguientes contra la dad penetración de humedad: Emplear un cable de conexión apropiado (ver capitulo " Conectar a la alimentación de tensión") Apretar firmemente el prensaestopas o el conector enchufable Conducir hacia abajo el cable de conexión antes del prensaestopas o del conector enchufable Esto vale sobre todo para el montaje al aire libre, en recintos en los que cabe esperar la presencia de humedad (p.ej. debido a procesos de limpieza) y en depósitos refrigerados o caldeados.

Indicaciones:

Asegúrese de que durante la instalación o el mantenimiento no puede acceder ninguna humedad o suciedad al interior del equipo.

Asegúrese que la tapa de la carcasa esté cerrada y asegurada en caso necesario durante el funcionamiento para mantener el tipo de protección del equipo.

Ventilación

La ventilación para la carcasa de la electrónica se realiza a través de un elemento de filtro en la zona de los racores para cables.

Fig. 7: Posición del elemento de filtrado - versiones No-Ex, Ex-ia y Ex-d-ia

- 1 Cámara única de plástico, acero inoxidable (fundición de precisión)
- 2 Aluminio de cámara única
- 3 Cámara única de acero inoxidable (electropulida)
- 4 Dos cámaras de plástico
- 5 Dos cámaras de aluminio, acero inoxidable (fundición de precisión)
- 6 Elemento de filtro

Información:

Durante el funcionamiento hay que prestar atención a que el elemento de filtro siempre esté libres de incrustaciones. Para la limpieza no se puede emplear ningún limpiador de alta presión.

Giro de la carcasa La carcasa de la electrónica puede girarse 330° para una mejor legibilidad o para acceder al cableado. Un tope evita que la carcasa pueda ser girada en exceso.

Según versión y material de la carcasa hay que aflojar aún un poco el tornillo de fijación en el cuello da la carcasa. La carcasa puede ser girada ahora a la posición deseada. Apriete de nuevo el tornillo de fijación en cuanto se haya alcanzado la posición deseada.

Límites de temperatura Temperaturas de proceso de proceso elevadas equivalen también a menudo a temperaturas ambiente elevadas. Asegurar que no se excedan los límites de temperatura superiores indicados en el capítulo

" *Datos técnicos*" para el entorno de la carcasa de la electrónica y el cable de conexión.

4.2 Instrucciones para las aplicaciones de oxigeno

Advertencia:

El oxígeno, como agente oxidante, puede provocar o intensificar los incendios. Aceites, grasas, ciertos plásticos y la suciedad pueden arder explosivamente en contacto con el oxígeno. Existe riesgo de lesiones personales graves o daños materiales.

Por eso, para evitarlo, tome, entre otras, las siguientes precauciones:

- Todos los componentes de la instalación equipos de medición tienen que haber sido limpiados en conformidad con los requisitos de los estándares y normas reconocidos.
- En dependencia del material de la junta no se pueden exceder determinadas temperaturas y presiones máximas, ver capítulo " Datos técnicos"
- Los equipos de aplicación de oxígeno sólo se pueden desembalar de la película de PE inmediatamente antes del montaje.
- Comprobar si la marca "O2" es visible en la conexión de proceso después de eliminar la protección para la conexión de proceso.
- Evitar cualquier entrada de aceite, grasa y suciedad

4.3 Enlace al proceso

Transmisor de presión Los transductores de presión diferencial son elementos montados efectiva dentro de tuberías que generan una caída de presión en función de la corriente. Por medio de esta presión diferencial se mide el caudal. Transductores de presión diferencial típicos son los tubos de Venturi, los diafragmas de medición o las sondas de presión dinámica. Encontrará indicaciones para el montaje de transductores de presión diferencial en las normas correspondientes y en la documentación del equipo fabricante correspondiente. Líneas de presión efec-Las líneas de presión efectiva son tuberías con un diámetro reducido. tiva Sirven para la conexión del transmisor de presión diferencial al punto de toma de presión o al transductor de presión diferencial. Principios Las líneas de presión efectiva para gases tienen que permanecer siempre completamente secas, no debe formarse nadas de condensado. Las líneas de presión efectiva para fluidos tienen que estar siempre llenas y no deben contener burbujas de gas. Por ello, con líquidos hay que prever siempre la spurgas adecuadas, y con gases los drenajes adecuados.

Tendido

Las líneas de presión efectiva tienen que estar tendidas siempre con una pendiente de subida/bajada estríctamente monótona de 2 % como mínimo, pero mejor con hasta 10 %.

Conexión lado de alta/

baja presión

	Encontrará recomendaciones para el tendido de líneas de presión efectiva en los correspondientes estándares nacionales o internacio- nales.
	Conexión Las líneas de presión efectiva se conectan al equipo por medio de atornillamientos corrientes de anillo cortante con la rosca adecuada.
i	Indicaciones: Observe las instrucciones de montaje del fabricante correspondiente y selle la rosca, p. ej. con cinta de PTFE.
Bloques de válvulas	Los bloques de válvulas sirven para el primer bloqueo al conectar al proceso el transmisor de presión diferencial. Además sirven para la compensación de presión de las cámaras de medición durante el ajuste.
	Hay disponibles bloques de válvulas de 3 y 5 unidades (ver el capítu- lo " <i>Instrucciones de montaje y conexión</i> ").
Válvulas de purga, tapo- nes roscados	Hay que cerrar las aperturas libres en el módulo de proceso mediante válvulas de purga o tapones roscados. Para el par de apriete requeri- do, ver el capítulo " <i>Datos técnicos</i> ".
i	Indicaciones: Emplee los componentes adjuntos y selle la rosca con cuatro capas de cinta de PTFE.

4.4 Instrucciones de montaje y conexión

Al conectar VEGADIF 85 al punto de medición hay que observar el lado de alta/baja presión del módulo de proceso. ¹).

El lado de alta presión se reconoce por una "H", el lado de baja presión por una "L" en el módulo de proceso junto a las bridas ovales.

Indicaciones:

La presión estática se mide en el lado de baja presión " L".

Fig. 8: Identificación del lado de alta/baja presión en el módulo de proceso

- 1 H = Lado de alta presión
- 2 L = Lado de baja presión
- ¹⁾ La presión efectiva en "H" es tenida en cuenta como magnitud positiva en el cálculo de la diferencia de presión, y la presión efectiva en "L" es tenida en cuenta como magnitud negativa.

Bloque de 3 válvulas

Fig. 9: Conexión de un bloque de 3 válvulas

- Conexión a proceso 1
- Conexión a proceso 2
- 3 Válvula de entrada
- Válvula de entrada 4
- 5 Válvulas de compensación

Bloque de 3 válvulas embridable por ambos lados

Fig. 10: Conexión de un bloque de 3 válvulas embridable por ambos lados

- 1 Conexión a proceso
- 2 Conexión a proceso
- 3 Válvula de entrada
- Válvula de entrada 4
- 5 Válvulas de compensación

Indicaciones:

Con bloques de válvulas embridables por ambos lados no se requiere ningún brazo de soporte. El lado de proceso del bloque de válvulas

se monta directamente a un transductor de presión diferencial, p.ej. a un diafragma de medición.

Bloque de 5 válvulas

Fig. 11: Conexión de un bloque de 5 válvulas

- 1 Conexión a proceso
- 2 Conexión a proceso
- 3 Válvula de entrada
- 4 Válvulas de compensación
- 5 Válvula de entrada
- 6 Válvula para controlar/ventilar
- 7 Válvula para controlar/ventilar

4.5 Configuraciones de medición

4.5.1 Resumen

Las secciones siguientes muestran las configuraciones de medición comunes:

- Nivel
- Flujo
- Presión diferencial
- Capa de separación
- Densidad

Según la aplicación, pueden darse también configuraciones diferentes.

Indicaciones: Por mor de la s

Por mor de la sencillez, las líneas de presión efectiva se representan en parte con un transcurso horizontal y con ángulos agudos. Para el tendido, observe las indicaciones del capítulo " *Montaje* y *Enlace al*

En depósitos cerrados con líneas de presión efectiva proceso", así como los Hook Ups de las instrucciones adicionales " Accesorios de montaje técnica de medición de presión".

4.5.2 Nivel

- Montar el equipo debajo de la conexión de medición inferior para que las líneas de presión efectiva estén siempre llenas de líquido
- Conectar el lado de baja presión siempre por encima del nivel máximo
- Al realizar mediciones en medios con contenido de sólidos, tales como p.ej. líquidos sucios, es conveniente el montaje de separadores y válvulas de purga. De este modo es posible capturar y eliminar deposiciones.

Fig. 12: Configuración de medición para medida de nivel en depósitos cerrados

- 1 Válvulas de cierre
- 2 Bloque de 3 válvulas
- 3 Separador
- 4 Válvulas de purga
- 5 VEGADIF 85

En depósitos cerrados con separador unilateral

- Montar el equipo directamente en el depósito
- Conectar el lado de baja presión siempre por encima del nivel máximo
- Al realizar mediciones en medios con contenido de sólidos, tales como p.ej. líquidos sucios, es conveniente el montaje de separadores y válvulas de purga. De este modo es posible capturar y eliminar deposiciones.

Fig. 13: Configuración de medición para medida de nivel en depósitos cerrados

- 1 Válvula de cierre
- 2 Separador
- 3 Válvula de purga
- 4 VEGADIF 85

En depósitos cerrados Montar el equipo debajo del sello separador inferior con separador bilateral

La temperatura ambiente debería ser igual para ambos capilares

Información:

La medición de nivel tiene lugar sólo entre el borde superior del separador inferior y el borde inferior del separador superior.

Fig. 14: Configuración de medición para medida de nivel en depósitos cerrados VEGADIF 85

- Montar el equipo debajo de la conexión de medición inferior para que las líneas de presión efectiva estén siempre llenas de líquido
- Conectar el lado de baja presión siempre por encima del nivel máximo
- El deposito de condensado garantiza una presión constante en el lado de baja presión
- Al realizar mediciones en medios con contenido de sólidos, tales como p.ej. líquidos sucios, es conveniente el montaje de separadores y válvulas de purga. De este modo es posible capturar y eliminar deposiciones.

53571-ES-230822

En depósitos cerrados con superposición de vapor con línea de presión efectiva

Fig. 15: Configuración de medición para medición de nivel en depósitos cerrados con superposición de vapor

- 1 Depósito de condensado
- 2 Válvulas de cierre
- 3 Bloque de 3 válvulas
- 4 Separador
- 5 Válvulas de purga
- 6 VEGADIF 85

4.5.3 Flujo

En gases

Fig. 16: Configuración de medición para medición de flujo en gases, conexión a través de un bloque de 3 válvulas, embridable por ambos lados

- 1 Diafragma o sonda de presión dinámica
- 2 Bloque de 3 válvulas embridable por ambos lados
- 3 VEGADIF 85

En vapores

- Montar el equipo debajo del punto de medida
- Montar los depósitos de condensado a la misma altura que las tubuladuras de extracción y con la misma distancia con respecto al equipo
- Antes de la puesta en marcha llenar las líneas de presión efectiva a la altura de los depósitos de condensado

Fig. 17: Configuración de medida para medición de flujo en vapores

- 1 Depósitos de condensado
- 2 Diafragma o sonda de presión dinámica
- 3 Válvulas de cierre
- 4 Bloque de 3 válvulas
- 5 Válvulas de drenaje o de purga
- 6 VEGADIF 85

en líquidos

- Montar el equipo debajo del punto de medición para que las líneas de presión efectiva estén siempre llenas de líquido y las burbujas de gas puedan subir de retorno a la línea de proceso
- En mediciones en medios con contenido de sólidos, tales como p. Ej. líquidos sucios, es conveniente el montaje de separadores y válvulas de purga, para poder capturar y eliminar sedimentos
- Antes de la puesta en marcha llenar las líneas de presión efectiva a la altura de los depósitos de condensado

Fig. 18: Configuración de medida para medición de flujo en líquidos

- 1 Diafragma o sonda de presión dinámica
- 2 Válvulas de cierre
- 3 Bloque de 3 válvulas
- 4 Separador
- 5 Válvulas de purga
- 6 VEGADIF 85

4.5.4 Presión diferencial

En gases y vapores

• Montar el equipo encima del punto de medición para que el condensado pueda fluir a la línea de proceso.

Fig. 19: Configuración de medición para medición de presión diferencial entre dos tuberías en gases y vapores

- 1 Tuberías
- 2 Válvulas de cierre
- 3 Bloque de 3 válvulas
- VEGADIF 85 4

y condensado

En instalaciones de vapor • Montar el equipo por debajo del punto de medición para que puedan formarse acumulaciones de condensado en las líneas de presión diferencial.

Fig. 20: Configuración de medición para medición de presión diferencial entre un conducto de vapor y un conducto de condensado

- 1 Conducto de vapor
- 2 Conducto de condensado
- 3 Válvulas de cierre
- 4 Depósitos de condensado
- 5 Bloque de 5 válvulas
- 6 VEGADIF 85

en líquidos

- Montar el equipo debajo del punto de medición para que las líneas de presión efectiva estén siempre llenas de líquido y las burbujas de gas puedan subir de retorno a la línea de proceso
- Al realizar mediciones en medios con contenido de sólidos, tales como p.ej. líquidos sucios, es conveniente el montaje de separadores y válvulas de purga. De este modo es posible capturar y eliminar deposiciones.

Fig. 21: Configuración de medición para la medición de presión diferencial en líquidos

- 1 p. Ej. Filtros
- 2 Válvulas de cierre
- 3 Bloque de 3 válvulas
- 4 Separador
- 5 Válvulas de purga
- 6 VEGADIF 85

Para la aplicación de sistemas de separadores en todos los medios

- Montar separador con capilares encima o al lado de la tubería
- Para aplicaciones de vacío: Montar VEGADIF 85 debajo del punto de medición
- La temperatura ambiente debería ser igual para ambos capilares

Fig. 22: Configuración de medición para medida de presión diferencial en gases, vapores y líquidos

- 1 Separador con unión roscada para tubos
- 2 Capilares
- 3 P.ej. filtros
- 4 VEGADIF 85

4.5.5 Densidad

Medición de densidad

- Montar el equipo debajo del sello separador inferior
- Para una mayor precisión de medición, ambos puntos de medición tienen que estar lo más separados posible
- La temperatura ambiente debería ser igual para ambos capilares

Fig. 23: Configuración de medición para medición de densidad

La medición de densidad es posible sólo con un nivel por encima del punto de medición superior. Si el nivel baja por debajo del punto de medición superior, la medición sigue trabajando con el último valor de densidad.

Esa medición de densidad funciona tanto con depósitos abiertos como con depósitos cerrados. Hay que tener en cuenta que pequeñas variaciones de densidad sólo provocan pequeñas variaciones en la presión diferencial medida.

Ejemplo

Distancia entre los dos puntos de medición 0,3 m, densidad mín. 1000 kg/m³, densidad máx. 1200 kg/m³

Llevar a cabo el ajuste Min. para la presión diferencial medida con la densidad 1,0:

 $\Delta p = \rho \bullet g \bullet h$

= 1000 kg/m³ • 9,81 m/s² • 0,3 m

= 2943 Pa = 29,43 mbar

Llevar a cabo el ajuste Max. para la presión diferencial medida con la densidad 1,2:

 $\Delta p = \rho \bullet g \bullet h$ = 1200 kg/m³ • 9,81 m/s² • 0,3 m = 3531 Pa = 35,31 mbar

4.5.6 Capa de separación

Medición de interface

- Montar el equipo debajo del sello separador inferior
- La temperatura ambiente debería ser igual para ambos capilares

Fig. 24: Configuración de medición para medición de interface

Una separación de capas solamente es posible, si la densidad de ambos medios permanecen iguales y la capa de separación siempre está entre los dos medios. El nivel total tiene que estar por encima del punto de medición superior

Esa medición de densidad funciona tanto con depósitos abiertos como con depósitos cerrados.

Distancia entre los dos puntos de medición 0,3 m, densidad mín. 800 kg/m³, densidad máx. 1000 kg/m³

Llevar a cabo el ajuste Min. para la presión diferencial que se mide a la altura de la interfase en el punto de medición inferior:

 $\Delta p = \rho \cdot g \cdot h$ = 800 kg/m³ • 9,81 m/s • 0,3 m = 2354 Pa = 23,54 mbar

Llevar a cabo el ajuste Max. para la presión diferencial que se mide a la altura de la interfase en el punto de medición superior:

$$\begin{aligned} \Delta p &= \rho \bullet g \bullet h \\ &= 1000 \text{ kg/m}^3 \bullet 9,81 \text{ m/s} \bullet 0,3 \text{ m} \end{aligned}$$

53571-ES-230822

Ejemplo

= 2943 Pa = 29,43 mbar

5 Conectar a la tensión de alimentación y al sistema de bus

5.1 Preparación de la conexión

Instrucciones de seguridad Prestar atención fundamentalmente a las instrucciones de seguridad siguientes:

- La conexión eléctrica tiene que ser realizada exclusivamente por personal cualificado y que hayan sido autorizados por el titular de la instalación
- En caso de esperarse sobrecargas de voltaje, hay que montar equipos de protección contra sobrecarga

Advertencia:

Conectar o desconectar sólo en estado libre de tensión.

Alimentación de tensión

La tensión de alimentación y la señal de bus digital son conducidas a través de cables de conexión bifilares separados.

Los datos para la alimentación de tensión se indican en el capítulo " Datos técnicos".

Indicaciones:

Alimente el aparato a través de un circuito de energía limitada (potencia máxima 100 W) según IEC 61010-1, p. ej.:

- Clase 2 fuente de alimentación (según UL1310)
- Fuente de alimentación SELV (tensión baja de seguridad) con limitación interna o externa adecuada de la corriente de salida.

Cable de conexiónEl equipo se conecta con cable comercial de dos hilos, torcido
adecuado para RS 485. En caso de esperarse interferencias electro-
magnéticas, superiores a los valores de comprobación de la norma
EN 61326 para zonas industriales, hay que emplear cable blindado.

En equipos con carcasa y prensaestopas, emplee cables con sección redonda. Emplee un prensaestopas a la medida del diámetro del cable para garantizar la estanqueización del prensaestopas (tipo de protección IP).

Atender, que toda la instalación se realice según la especificación Fieldbus. Hay que prestar especialmente atención a la terminación del bus a través de las resistencia finales correspondientes.

Prensaestopas Rosca métrica:

En carcasas del equipo con roscas métricas, los prensaestopas vienen ya enroscados de fábrica. Están cerrados con tapones de plástico para la protección durante el transporte.

Indicaciones:

Hay que retirar esos tapones antes de realizar la conexión eléctrica.

Rosca NPT:

En caso de carcasas con roscas autoselladoras de NPT, los prensaestopas no pueden enroscarse en fábrica. Por ello, las aperturas

libres de las entradas de cables están cerradas con tapas protectoras contra el polvo de color rojo como protección para el transporte.

i	Indicaciones: Es necesario sustituir esas tapas de protección por prensaestopas homologados o por tapones ciegos adecuados antes de la puesta en marcha.
	Con la carcasa de plástico hay que atornillar el prensaestopas de NPT o el tubo protector de acero sin grasa en el inserto roscado. Par máximo de apriete para todas las carcasas ver capítulo " <i>Datos</i>
	técnicos".
Blindaje del cable y cone- xión a tierra	Prestar atención para que el blindaje del cable y la puesta a tierra se realicen según la especificación del bus de campo. Recomendamos conectar el blindaje del cable al potencial de tierra por ambos lados.
	En el caso de instalaciones con conexión equipotencial, conectar el blindaje del cable de la fuente de alimentación y del sensor directa- mente al potencial de tierra. Para ello hay que conectar el blindaje del sensor directamente al terminal interno de puesta a tierra. El terminal externo de puesta a tierra de la carcasa tiene que estar conectado con baja impedancia a la conexión equipotencial.
	5.2 Conexión
Técnica de conexión	La conexión de la alimentación de tensión y de la salida de señal se realizan por los terminales de resorte en la carcasa.
	La conexión con el módulo de visualización y configuración o con el adaptador de interface se realiza a través de las espigas de contacto en la carcasa.
i	Información: El bloque de terminales es enchufable y se puede sacar de la elec- trónica. Con ese objetivo, subir y extraer el bloque de terminales con un destornillador pequeño. Cuando se enchufe nuevamente tiene que enclavar perceptiblemente.
Pasos de conexión	Proceder de la forma siguiente:
	1. Desenroscar la tapa de la carcasa
	2. Soltar la tuerca de compresión del prensaestopas y quitar el tapón
	 Pelar aproximadamente 10 cm (4 pulg.) del cable de conexión de la salida de señal, quitando aproximadamente 1 cm (0.4 pulg.) del aislamiento a los extremos de los conductores
	4. Empujar el cable en el sensor a través del prensaestopas

Fig. 25: Pasos de conexión 5 y 6

 Conectar los extremos de los cables en los terminales según el digrama de cableado

Información:

Т

Los conductores fijos y los conductores flexibles con virolas de cables se enchufan directamente en las aberturas de los terminales. Para conductores flexibles sin virolas de cables empujar el terminal con un destornillador pequeño, se libera la abertura del terminal. Cuando se suelta el destornillador se cierran los terminales nuevamente.

- 6. Comprobar el asiento correcto de los conductores en los terminales tirando ligeramente de ellos
- 7. Conectar el blindaje del cable al terminal de tierra interno, conectar el terminal de tierra externo con la conexión equipotencial en caso de alimentación con bajo voltaje
- Tender el cable de conexión para la alimentación de corriente de la misma forma según el esquema de conexión, en caso de alimentación con tensión de red conectar adicionalmente el conductor de puesta a tierra al terminal interno de puesta a tierra.
- 9. Apretar la tuerca de compresión del prensaestopas. La junta tiene que abrazar el cable completamente
- 10. Atornillar la tapa de la carcasa

Con ello queda establecida la conexión eléctrica.

Información:

Los bloques de terminales son enchufables y se pueden sacar del inserto de la carcasa. Con ese objetivo, subir y extraer el bloque de terminales con un destornillador pequeño. Cuando se enchufe nuevamente tiene que enclavar perceptiblemente.

Resumen

5.3 Esquema de conexión

Fig. 26: Posición del compartimiento de conexiones (Electrónica Modbus) y el compartimiento de la electrónica (Electrónica del sensor)

- 1 Compartimiento de conexiones
- 2 Compartimiento de la electrónica

Fig. 27: Compartimiento de la electrónica - Carcasa de dos cámaras.

- 1 Conexión interna hacia el compartimento de conexión
- 2 Para el módulo de visualización y configuración o adaptador de interface

Compartimiento de conexiones

Compartimiento de la

electrónica

Fig. 28: Compartimiento de conexiones

- 1 Interface USB
- 2 Conmutador deslizante para resistencia de terminación integrada (20 Ω)
- 3 Señal Modbus
- 4 Alimentación de tensión

Terminal	Función	Polaridad
1	Alimentación de tensión	+

Terminal	Función	Polaridad
2	Alimentación de tensión	-
3	Señal Modbus D0	+
4	Señal Modbus D1	-
5	Tierra funcional con instalación según CSA (Canadian Standards Associa- tion)	

5.4 Carcasa externa con versión IP68 (25 bar)

Cámara de la electrónica y conexión para alimentación

Fig. 29: Compartimento de la electrónica y de conexiones

- 1 Módulo electrónico
- 2 Prensaestopas para la alimentación de tensión
- 3 Prensaestopas para cable de conexión sensor de valores medidos

Caja de terminales zócalo de la caja

Fig. 30: Conexión del sensor en el zócalo de la caja

- 1 Amarillo
- 2 Blanco
- 3 Rojo
- 4 Negro
- 5 Blindaje
- 6 Capilares de compensación de presión

Compartimiento de conexiones

Fig. 31: Compartimiento de conexiones

- 1 Interface USB
- 2 Conmutador deslizante para resistencia de terminación integrada (20 Ω)
- 3 Señal Modbus
- 4 Alimentación de tensión

Terminal	Función	Polaridad
1	Alimentación de tensión	+
2	Alimentación de tensión	-
3	Señal Modbus D0	+
4	Señal Modbus D1	-

Terminal	Función	Polaridad
5	Tierra funcional con instalación según CSA (Canadian Standards Associa- tion)	

5.5 Fase de conexión

Después de la conexión del equipo a la tensión de alimentación o después del regreso de la tensión, el equipo lleva a cabo una autocomprobación:

- Comprobación interna de la electrónica
- Visualización de un aviso de estado en pantalla o PC

Después se registra el valor medido actual en la línea de señal. El valor considera los ajustes realizados previamente, p. Ej. el ajuste de fábrica.

6 Poner en marcha el sensor con el módulo de visualización y configuración

6.1 Colocar el módulo de visualización y configuración

El módulo de visualización y configuración se puede montar y desmontar del sensor en cualquier momento. (Se pueden seleccionar cuatro posiciones cada una de ellas a 90° de la siguiente. Para ello no es necesario interrumpir la alimentación de tensión.

Proceder de la forma siguiente:

- 1. Desenroscar la tapa de la carcasa
- 2. Poner el módulo de visualización y configuración sobre la electrónica, girándolo hacia la derecha hasta que encastre
- 3. Atornillar fijamente la tapa de la carcasa con la ventana.

El desmontaje tiene lugar análogamente en secuencia inversa.

El módulo de visualización y configuración es alimentado por el sensor, no se requiere ninguna conexión adicional.

Fig. 32: Inserción del módulo de visualización y configuración

Indicaciones:

En caso de que se desee reequipar el instrumento con un módulo de visualización y configuración para la indicación continua del valor medido, se necesita una tapa más alta con ventana.

6.2 Sistema de configuración

Fig. 33: Elementos de indicación y ajuste

- 1 Pantalla de cristal líquido
- 2 Teclas de configuración

Funciones de las teclas

- Tecla *[OK]*:
 - Cambiar al esquema de menús
 - Confirmar el menú seleccionado
 - Edición de parámetros
 - Almacenar valor
- Tecla [->]:
 - Cambiar representación valor medido
 - Seleccionar registro de lista
 - Seleccionar puntos de menú
 - Seleccionar posición de edición
- Tecla [+]:
 - Modificar el valor de un parámetro
- Tecla- [ESC]:
 - Interrupción de la entrada
 - Retornar al menú de orden superior

Sistema de configuración	El equipo se opera con las cuatro teclas del módulo de visualización y configuración. En la pantalla LC aparecen indicados los puntos individuales del menú. La función de la teclas individuales se pueden encontrar en la ilustración previa.
Sistema de configuración	Con la versión Bluetooth del módulo de indicación y aiuste, el equino

- Teclas mediante lápiz magnético Con la version Bluetooth del modulo de indicación y ajuste, el equipo se configura alternativamente por medio de un lápiz magnético. Con éste se accionan las cuatro teclas del módulo de indicación y ajuste a través de la tapa cerrada con ventana de la carcasa del sensor.

Fig. 34: Elementos de indicación y ajuste - con manejo mediante lápiz magnético

- 1 Pantalla de cristal líquido
- 2 Lápiz magnético
- 3 Teclas de configuración
- 4 Tapa con ventana

Funciones de tiempo Pulsando una vez las teclas *[+]* y *[->]* el valor editado o el cursor cambia una posición. Cuando se pulsa la tecla por más de 1 s el cambio se produce continuamente.

La pulsación simultánea de las teclas **[OK]** y **[ESC]** por más de 5 s provocan un retorno al menú principal. Entonces el idioma del menú principal cambia al " *Inglés*".

Aproximadamente 60 minutos después de la última pulsación de teclas se produce una restauración automática de la indicación de valor. Durante esta operación se pierden los valores sin confirmar con *[OK]*.

6.3 Visualización del valor de medición

Visualización del valor de medición

Con la tecla [->] se puede cambiar entre tres modos de indicación diferentes.

En la primera vista aparece el valor de medición seleccionado en letras mayúsculas.

En la segunda vista aparecen representados el valor de medición seleccionado y una representación de gráfico de barras correspondiente.

En la tercera vista aparecen representados el valor de medición seleccionado, así como un segundo valor seleccionable p. Ej. el valor de temperatura.

Con la tecla " **OK**" se cambia al menú de selección " *Lenguaje*" durante la primera puesta en marcha del instrumento.

Selección del lenguaje

Este punto menú sirve para la selección del idioma para la ulterior parametrización.

Seleccione el idioma deseado con la tecla " [->]", con OK" se confirma la selección y se cambia al menú principal.

La selección realizada puede cambiarse ulteriormente en todo momento mediante el punto de menú " *Puesta en marcha - Display, idioma del menú*".

6.4 Parametrización - Función de puesta en marcha rápida

Para ajustar el sensor de forma rápida y sencilla a la tarea de medición, seleccione la opción del menú " *Puesta en marcha rápida*" en la pantalla inicial del módulo de visualización y configuración.

Seleccione cada uno de los pasos con la tecla [->].

Una vez concluido el último paso, se indica brevemente " Puesta en marcha rápida terminada con éxito".

El retorno a la indicación de valores medidos se efectúa mediante las teclas [->] o [ESC] o automáticamente después de 3 s

Indicaciones:

Encontrará una descripción de cada uno de los pasos en el manual de instrucciones breves del sensor.

El " Ajuste ampliado" se encuentra en el subcapítulo siguiente.

6.5 Parametrización - Ajuste ampliado

En caso de puntos de medición que requieran aplicaciones técnicas exigentes, pueden realizarse ajustes más amplios en *Ajuste amplia- do*.

Menú principal

El menú principal está dividido en cinco zonas con la funcionalidad siguiente:

Puesta en servicio: Ajustes p. ej. para el nombre del punto de medición, aplicación, unidades, corrección de posición, ajuste, salida de señal, bloguear/habilitar ajuste

Display: Ajustes p. Ej. para el idioma, indicación del valor de medición. iluminación

Diagnóstico: Informaciones p. Ej. sobre estado del equipo, indicador de seguimiento, simulación

Otros ajustes: Fecha/Hora, Reset, función de copia

Información: Nombre del equipo, versión de hardware y software, fecha de calibración de fábrica. características del sensor

Indicaciones:

En el punto del menú principal " Puesta en marcha" hay que seleccionar los puntos secundarios individuales del menú de forma secuencial para el ajuste óptimo de la medición, dotándolos con los parámetros correctos. Mantener la secuencia lo meior posible.

Los puntos secundarios del menú se describen a continuación.

6.5.1 Puesta en marcha

Nombre del punto de En esta opción de menú TAG del sensor editar un identificador de doce dígitos para el punto de medición .

> De esta forma se puede asignar una denominación definida al sensor, por ejemplo, el nombre del punto de medida o la denominación del tanque o del producto. En sistemas digitales y la documentación de instalaciones mayores hay que dar una denominación única para la identificación exacta de los puntos de medida individuales.

El conjunto de caracteres comprende:

- Letras de A ... Z
- Números de 0 ... 9
- Caracteres especiales +, -, /, -

Puesta en narcha Nombre punto de medida Aplicación Unidades Corrección de la posición Ajuste	Nonbre punto de nedida Sensor
---	----------------------------------

Aplicación

medición

El VEGADIF 85 puede emplearse para la medición de caudal, de presión diferencial, de densidad y interfase. El ajuste de fábrica es medición de presión diferencial. El cambio se realiza en este menú de configuración.

En dependencia de la aplicación, hay diferentes subcapítulos importantes en los siguientes pasos de configuración. Allí podrá encontrar los pasos de configuración individuales.

Puesta en narcha	Hp.
Nonbre punto de nedida	~6
Aplicación	1
Unidades	F
Corrección de la posición	[
Ajuste	I
T	

Aplicación
√Nive1
Caudal
Presión diferencial
Densidad
Interfaz

Entre los parámetros deseados a través de las teclas correspondientes, almacenar la entrada con *[OK]* y pasar con *[ESC]* y *[->]* a la próxima opción de menú.

Unidades

Unidad de ajuste:

En esta opción de menú de determinan las unidades de ajuste del equipo. La selección realizada determina la unidad indicada en las opciones de menú " *Ajuste mín. (cero)* " y " *Ajuste máx. (span)* ".

Si hay que ajustar el nivel en una unidad de altura, entonces durante el ajuste es necesaria la entrada posterior de la densidad del medio.

Unidad de temperatura:

Adicionalmente, se especifica la unidad de temperatura del instrumento. La elección determina la unidad indicada en las opciones del menú "*Indicador de seguimiento temperatura*" y " en las variables de la señal de salida digital".

Unidad de la presión estática:

Además se determina la unidad de la presión estática.

Entre los parámetros deseados a través de las teclas correspondientes, almacenar la entrada con **[OK]** y pasar con **[ESC]** y **[->]** a la próxima opción de menú.

Corrección de posición La posición de montaje del equipo puede desplazar el valor de medición (offset). La corrección de posición compensa dicho offset. Durante esta operación puede aceptarse automáticamente el valor de medición actual.

> El VEGADIF 85 dispone de dos sistemas de sensor separados: Sensor para la presión diferencial y sensor para la presión estática. Por ello, existen las siguientes posibilidades para la correción de posición:

- Corrección automática para ambos sensores
- Corrección manual para la presión diferencial
- Corrección manual para la presión estática

Puesta en marcha	Presión diferencial	Corrección de la posición
Aplicación	Offset = 0.0000 bar	
Unidades	Act. 0.0070 bar	Buto-corrección
Corrección de la posición	Presión estática	Editar presión diferencial
Ajuste	Ω ffset = $\Omega_{-}0000$ bar	Editar presión estática
Tiempo integración	8ct. 0.0000 bar	
▼		

53571-ES-230822

Para la corrección de posición automática se acepta el valor medido actual como valor de corrección. Ese valor no puede estar alterado por recubrimiento de producto o una presión estática.

El valor de offset es determinado por el usuario durante la corrección de posición automática. Para eso seleccionar la función " *Editar*" y entrar el valor deseado.

Después de realizada la corrección de posición hay que corregir a 0 el valor medido. El valor de corrección aparece en el display como valor de offset con signo invertido.

El valor de corrección tiene que estar dentro del rango de medición nominal, independientemente de si el valor de corrección se determina automáticamente o se introduce manualmente. Dependiendo del valor de corrección, el rango de medición nominal aumenta o disminuye aparentemente. Sin embargo, esto es meramente una consecuencia del offset calculado. El rango de medición nominal efectivo no se modifica. El siguiente gráfico clarifica este aspecto:

Fig. 35: Ejemplo de valor de corrección

- 1 Límite inferior del rango de medición nominal
- 2 Límite superior del rango de medición nominal
- 3 Valor de corrección (ejemplo); se indica como "0" en el display
- 4 Rango de medición aparentemente aumentado/disminuido

La corrección de posición se puede repetir a voluntad.

Ajuste

VEGADIF 85 mide siempre una presión independientemente de la variable de proceso seleccionada en la opción del menú " *Aplica-ción*". Para emitir correctamente la variable de proceso seleccionada, hay que realizar una asignación a 0 % y 100 % de la señal de salida (Ajuste).

Para la aplicación " *Nivel*", para el ajuste se entra la presión hidrostática, p.ej. con el depósito vacío y con el depósito lleno. Una presión superpuesta es detectada por el lado de baja presión y es compensada automáticamente. Ver el ejemplo siguiente:

Fig. 36: Ejemplo de parametrización ajuste mín./máx. medición de nivel

- 1 Nivel mín. = 0 % corresponde a 0,0 mbar
- 2 Nivel máx. = 100 % corresponde a a 490,5 mbar

Si se desconocen esos valores, también se puede ajustar con niveles de por ejemplo 10 % y 90 % A través de dichas informaciones se calcula después la verdadera altura de llenado.

El nivel actual no tiene ninguna importancia durante ese ajuste, el ajuste mín./máx. siempre se realiza sin variación del producto. De esta forma pueden realizarse esos ajustes previamente sin necesidad de montaje del instrumento.

Indicaciones:

Si se exceden los rangos de ajuste, no se acepta el valor entrado. La edición se puede interrumpir con *[ESC]* o corregir a un valor dentro del rango de ajuste.

Para las variables de proceso restantes tales como p. Ej. presión de proceso, presión diferencial o caudal el ajuste se realiza de forma correspondiente.

Información:

Dependiendo de la forma del depósito y del ajuste, se indican niveles de llenado de -10 % ... +110 %. Con ello es posible indicar también, dentro de ciertos límites, "infrallenado" y "sobrellenado".

Ajuste mínimo - Nivel

Proceder de la forma siguiente:

 Seleccionar la opción del menú " Puesta en marcha" con [->] y confirmar con [OK]. Seleccionar ahora con [->] la opción de menú " Ajuste", después seleccionar Ajuste mín. y confirmar con [OK]. 53571-ES-230822

- Editar el valor porcentual con [OK], y poner el cursor con [->] sobre el punto deseado.
- Ajustar el valor porcentual deseado con [+] (p. Ej. 90 %) y almacenarlo con [OK]. El cursor salta al valor de presión.
- 4. Entrar el valor de presión para el depósito lleno correspondiente al valor porcentual (p. Ej. 900 mbar).
- 5. Almacenar ajustes con [OK]

El ajuste máx. a finalizado

Para un ajuste con llenado entrar simplemente el valor actual indicado debajo en la pantalla.

Ajuste mín. flujo Proc

Proceder de la forma siguiente:

 Seleccionar la opción de menú " Puesta en marcha" con [->] y confirmar con [OK]. Seleccionar ahora con [->] la opción de menú " Ajuste mín." y confirmar con [OK].

- Editar el valor mbar con [OK], y poner el cursor con [->] sobre el punto deseado.
- 3. Ajustar el valor mbar deseado con [+] y almacenar con [OK].
- 4. Con [ESC] y [->] cambiar al ajuste span

En caso de un flujo en dos direcciones (bidireccional), también es posible una presión diferencial negativa. En Ajuste Min. hay que entrar entonces la presión negativa máxima. Con la linealización hay que seleccionar correspondientemente "*bidireccional*" o "*bidireccional-radicador*", ver el punto de menú "*linealización*".

El ajuste mín. a finalizado.

Para un ajuste con presión entrar simplemente el valor actual indicado debajo en la pantalla.

Ajuste máx. flujo Proceder de la forma siguiente:

 Con [->] seleccionar la opción de menú ajuste máx. y confirmar con [OK].

- Editar el valor mbar con [OK], y poner el cursor con [->] sobre el punto deseado.
- 3. Ajustar el valor mbar deseado con [+] y almacenar con [OK].

El ajuste máx. a finalizado

Para un ajuste con presión entrar simplemente el valor actual indicado debajo en la pantalla.

Ajuste Zero presión diferencial Proceder de la forma siguiente:

 Seleccionar la opción de menú " Puesta en marcha" con [->] y confirmar con [OK]. Seleccionar ahora con [->] la opción de menú " Ajuste cero" y confirmar con [OK].

- Editar el valor mbar con [OK], y poner el cursor con [->] sobre el punto deseado.
- 3. Ajustar el valor mbar deseado con [+] y almacenar con [OK].
- 4. Con [ESC] y [->] cambiar al ajuste span

El ajuste cero a finalizado.

Información:

El ajuste zero desplaza el valor del ajuste span El margen de medición, es decir la cantidad de diferencia entre dichos valores se conserva durante dicha operación.

Para un ajuste con presión entrar simplemente el valor actual indicado debajo en la pantalla.

Ajuste Span presión diferencial Proceder de la forma siguiente:

 Con [->] seleccionar la opción de menú ajuste span y confirmar con [OK].

	Ajuste	Ajuste Máx. 🔗 🔒	Ajuste Máx.
	Distancia Distancia	100.00%	1 00.00
	Hjuste Min. Ajuste Máx.	10.197 kg/dm ³ 0.000 kg/dm ³	-10.00 100.00
	2. Editar el valor por sobre el punto des	centual con [OK] , y pone seado.	r el cursor con [->]
	3. Ajustar el valor po <i>[OK]</i> . El cursor sa	rcentual deseado con [+] Ita al valor de densidad.	y almacenarlo con
	4. Entrar la densidad	d máxima correspondiente	e al valor porcentual.
	De esta forma queda o	concluido el ajuste máx. c	lensidad.
Distancia interfase	Proceder de la forma s	siguiente:	
	1. En el punto de me ajuste" y confirma Distancia" con [O	enú " <i>Puesta en marcha</i> ", r con <i>[OK]</i> . Confirmar aho K] .	con [->] seleccionar " ora el punto de menú "
	Ajuste		
	 Ajuste Mín.	1.000m ±	
	Hjuste Max.		0.000 99.999
	2. Editar el valor la d con [->] sobre el p	istancia del sensor con [(punto deseado.	DK] , y poner el cursor
	3. Ajustar la distancia con [+] y almacenar con [OK].		
	De esta forma termina	a la entrada de distancia.	
Ajuste mín. de interfase	Proceder de la forma s	siguiente:	
	 Seleccionar la opo y confirmar con [C menú " Ajuste mín 	ción de menú " <i>Puesta en</i>)K] . Seleccionar ahora co n." y confirmar con [OK] .	<i>marcha</i> " con [->] on [->] la opción de
	Ajuste	Ajuste Mín.	Ajuste Mín.
	Distancia Ajuste Ním. Ajuste Máx.	0.00 % ≘ 0.500 m 0.000 m	1000.00
	2. Editar el valor por sobre el punto des	centual con <i>[OK]</i> , y pone seado.	r el cursor con [->]
	 Ajustar el valor porcentual deseado con [+] y almacenarlo con [OK]. El cursor salta al valor de altura. 		
	4. Entrar la altura mín porcentual.	nima de la interfase corre	spondiente al valor
	 Almacenar los ajustes con [OK] y cambiar con [ESC] y [->] al ajuste máx. 		
	De esta forma queda o	concluido el ajuste mín. ir	iterfase.
Ajuste máx. interface	Proceder de la forma s	siguiente:	
	 Seleccionar la opo y confirmar con [C menú " Ajuste máx 	ción de menú " <i>Puesta en</i> D K] . Seleccionar ahora co x." y confirmar con [OK] .	<i>marcha</i> " con [->] on [->] la opción de

- Editar el valor porcentual con [OK], y poner el cursor con [->] sobre el punto deseado.
- 3. Ajustar el valor porcentual deseado con [+] y almacenarlo con IOK1. El cursor salta al valor de altura.
- 4. Entrar la altura máxima de la interfase correspondiente al valor porcentual.

De esta forma queda concluido el ajuste máx. interfase.

Atenuación Para la atenuación de variaciones del valor de medición puede ajustarse un tiempo de integración de 0 ... 999 s en esa opción de menú. La anchura de paso es de 0,1 s.

> El tiempo de integración ajustado es efectivo para la medición de nivel y de presión de proceso, así como para todas las aplicaciones de la medición electrónica de presión diferencial.

El ajuste de fábrica es una atenuación de 0 s.

Linealización

Una linealización es requerida con todas las tareas de medición en las que la magnitud de proceso medida no aumenta linealmente con el valor de medición. Esto vale por ejemplo para el caudal medido por medio de la presión diferencial o para el volumen del depósito medido mediante el nivel. Para estos casos hay guardadas curvas de linealización correspondientes. Ellas indican la relación entre el valor de medición porcentual y la magnitud de proceso. La linealización vale para la indicación de los valores de medición y para la salida de corriente.

Con mediciones de flujo y con la selección " Lineal", la indicación y la salida (valor porcential/corriente) son lineales con respecto a la " Presión diferencial". Con ello es posible por ejemplo alimentar un ordenador de fluio.

Con medición de flujo y la selección " Radicar", la indicación y la salida (valor porcentual y salida) son lineales con respecto al "Flujo". 2)

En caso de flujo en dos direcciones (bidireccional), también es posible una presión diferencial negativa. Esto tiene que tenerse en cuenta ya en el punto de menú " Ajuste Mín. caudal".

El aparato supone una temperatura y una presión estática constantes y calcula mediante la curva característica radicada el flujo a partir de la presión diferencial medida.

Cuidado:

Durante el empleo del sensor correspondiente como parte de un seguro contra sobrellenado según WHG (Ley de recursos hidráulicos) hay que tener en cuenta lo siguiente:

Si se selecciona una curva de linealización, entonces la señal de medición ya no es forzosamente lineal con respecto a la altura de llenado. El usuario tiene que considerar este aspecto especialmente durante el ajuste del punto de conmutación en el emisor de señal límite.

Bloquear/habilitar ajuste En el punto de menú " *bloquear/habilitar ajuste*" se protegen los parámetros del sensor contra modificaciones indeseadas o involuntarias.

Para ello se introduce un PIN de cuatro dígitos.

Con el PIN activo solamente son posibles las funciones de configuración siguientes sin entrada del PIN:

- Selección de opciones de menú e indicación de datos
- Leer los datos del sensor en el módulo de visualización y configuración

La liberación de la configuración del sensor es posible además en cualquier punto de menú mediante la entrada del PIN.

Cuidado:

Cuando el PIN está activo la configuración a través de PACTware/ DTM y de otros sistemas está bloqueada.

6.5.2 Display

Esta opción del menú posibilita la configuración del idioma deseado.

Idiona del nenú
English
Français
√Español
Pycckuu
Italiano
T

Están disponibles los idiomas siguientes:

- Alemán
- Inglés
- Francés
- Español
- Ruso
- Italiano
- Holandés
- Portugués
- Japonés
- Chino
- Polaco
- Checo
- Turco

Idioma

El VEGADIF 85 está ajustado a inglés en el estado de suministro.

Valor de visualización 1 v 2 - 4 ... 20 mA

En ese punto menú se define qué valor de medición se visualiza en el display.

El ajuste de fábrica para el valor indicado es " Presión diferencial".

Formato de visualización En este punto de menú se define con cuántos decimales se visualiza 1 y 2 el valor de medición en el display.

El ajuste de fábrica para el formato de visualización es " Automático".

El módulo de visualización y configuración dispone de una retroiluminación para el display. En esta opción de menú se activa la iluminación. La intensidad de la tensión de alimentación necesaria se indica en el capítulo " Datos técnicos".

Display Idiona del menú Valor indicado 1 Valor indicado 2 Formato de pantalla Homineción	Iluninación Activado
--	-------------------------

La iluminación está conectada en el estado de suministro.

6.5.3 Diagnóstico

Estado del equipo

Iluminación

-		
En esta opción de mer	nú se indica el e	stado del equipo.

En caso de fallo aparece el código de error, p. ej. F017, la descripción del error, p. ej. " Rango de ajuste demasiado pequeño" y un número de cuatro dígitos para fines de servicio. Para los códigos de error con descripción, causa y remedios, ver el capítulo " Asset Management".

presión

Indicador de seguimiento En el sensor se guardan el valor de medición mínimo y máximo en cada caso para presión diferencial y presión estática. En el punto de menú " Indicador de seguimiento presión" se indican ambos valores.

> En otra ventana adicional se puede realizar un reset para los indicadores de seguimiento separadamente.

53571-ES-230822

Indicador de seguimiento temperatura

En el sensor se almacenan los valores mínimo y máximo de temperatura de la electrónica. En la opción del menú " *Indicador de seguimiento Temperatura*" se indican ambos valores.

En otra ventana adicional se puede realizar un reset para ambos indicadores de seguimiento separadamente.

Simulación

En este punto de menú se simulan valores de medición. De esta forma se puede comprobar el recorrido de la señal por el sistema de bus hasta la tarjeta de entrada del sistema de control.

Seleccionar la magnitud de simulación deseada y ajustar el valor numérico deseado.

Para desactivar la simulación pulse el botón [ESC] y confirme el mensaje " Desactivar simulación" con el botón [OK].

Cuidado:

Durante la simulación, el valor simulado es entregado como señal digital. El mensaje de estado dentro del marco de la función de gestión de activos es " *Maintenance*".

Información:

El sensor finaliza la simulación automáticamente después de 60 minutos.

6.5.4 Otros ajustes

Fecha/Hora

En esta opción del menú se ajusta el reloj interno del sensor. No se realiza ningún cambio a hora de verano/invierno.

Reset

Durante un reset se restauran determinados ajustes de parámetros realizados por el usuario.

Están disponibles las funciones de restauración siguientes:

Estado de suministro: Restauración de los ajustes de parámetros al momento del suministro de fábrica, incluyendo los ajustes específicos del pedido. Una curva de linealización de libre programación así como la memoria de valores medidos se borrarán.

Ajustes básicos: Restauración de los ajustes de parámetros, incluyendo parámetros especiales a los valores por defecto del equipo correspondiente. Una curvas de linealización programada, así como la memoria de valores medidos se borrarán.

Totalizador 1 y 2: Reset de las cantidades de flujo sumadas con la aplicación flujo

La tabla siguiente indica los valores por defecto del equipo. En dependencia de la versión del equipo o aplicación no están disponibles todos las opciones de menú u ocupados de forma diferente:

Puesta en marcha

Opción de menú	Parámetro	Valor por defecto
Nombre del punto de me- dición		Sensor
Aplicación	Aplicación	Nivel
Unidades	Unidad de ajuste	mbar (con rango nominal de medición ≤ 400 mbar) bar (con rango nominal de medición ≥ 1 bar)
	Unidad de temperatura	°C
Corrección de posición		0,00 bar
Ajuste	Ajuste cero/mín.	0,00 bar
	Calibración span/may	Bango nominal de medición en bar
	Calibración spanimax.	100,00 %
Atenuación	Tiempo de integración	1 s
Linealización		Lineal
Bloquear ajuste		Liberada

Display

Opción de menú	Valor por defecto	
Idioma del menú	En dependencia del pedido	
Valor indicado 1	Salida de corriente en %	
Valor indicado 2	Celda de medida: Temperatura de la celda de medición en °C	
	Celda de medida metálica: Temperatura de la electrónica en °C	
Formato de visualización 1 y 2	Cantidad automática de lugares decimales	
Iluminación	Conectado	

Diagnóstico

Opción de menú	Parámetro	Valor por defecto
Estado del equipo		-
Indicador de seguimiento	Presión	Valor de medición actual
	Temperatura	Valores de temperatura actuales celda de medición, electrónica
Simulación		Presión de proceso

Otros ajustes

Opción de menú	Parámetro	Valor por defecto
PIN		0000
Fecha/Hora		Fecha actual/Hora actual
Copiar ajustes del equipo		
Parámetros especiales		Ningún reset
Escala	Magnitud de escalada	Volumen en l
	Formato de escalado	0 % corresponde a 0 l
		100 % equivale a 0 l

Copiar ajustes del equipo Con esa función se copian los ajustes del equipo. Están disponible las funciones siguientes:

- Lectura desde el sensor: Lectura de datos desde el sensor y almacenaje en el módulo de visualización y configuración
- Escritura en el sensor: Guardar de vuelta en el sensor datos del módulo de visualización y configuración

Durante este proceso se salvan los datos y configuraciones siguientes del ajuste del módulo de visualización y configuración:

- Todos los datos de los menús " Puesta en marcha" y " Display"
- En menú " Otros ajustes" los puntos " Reset, Fecha/Hora"
- La curva de linealización de libre programación

Los datos copiados se salvan permanentemente en una memoria EEPROM en el módulo de visualización y configuración, manteniéndose incluso en caso un corte de la tensión. Pueden escribirse desde allí en uno o varios sensores o ser guardados para el backup de datos en caso de un posible cambio de la electrónica.

Indicaciones:

Antes de guardar los datos en el sensor se comprueba, si los datos se ajustan al sensor. Durante esta operación se indican el tipo de sensor de los datos de origen y el sensor de destino. En caso de que los datos no se ajusten, entonces se produce un aviso de error o se 53571-ES-230822

6 Poner en marcha el sensor con el módulo de visualización y configuración

bloquea la función. El almacenamiento se produce después de la liberación.

Escala (1) En la opción del menú " *Escala (1*)" se define la magnitud y la unidad de escala para el valor de nivel en el display, p. Ej. Volumen en l.

Masa Caudal Voluman Ofras
▼

Escala (2) En la opción del menú " *Escalada (2)*" se define el formato de escalada en la pantalla y la escalada del valor de medición de nivel para 0 % y 100 %.

Ajustes adicionales	Calibración	Calibración	
Reset Copiar ajustes d.equipo	Magn, Callibración	100 × =	100
Calibración	Formato calibración	_	1
Modo de operación HART		0 % =	0
•			

Valores característicos transductor de presión diferencial

En este punto de menú se determinan las unidades para el transductor de presión diferencial así como la selección del caudal másico o volumétrico.

Además, se realiza el ajuste para el flujo volumétrico o másico para 0 % o 100 %.

El aparato suma el flujo automáticamente en la unidad seleccionada. Con el ajuste correspondiente y con linealización bidireccional, el flujo se cuenta tanto positiva como negativamente.

Parámetros especialesEn esta opción del menú se llega a un área protegida, para la entrada
de parámetros especiales. En raros casos se pueden modificar pará-
metros individuales, para adaptar el sensor a requisitos especiales.

Modifique los ajustes de los parámetros especiales solo después de consultar con nuestros empleados de servicio.

6.5.5 Info

Nombre del dispositivo

En esta opción de menú se lee el nombre y el número de serie del equipo:

Versión del dispositivo

En esta opción de menú se indica la versión de hardware y software del sensor.

Fecha de calibración de fábrica

En esta opción del menú se indica la fecha de la calibración de fábrica del sensor así como la fecha de la última modificación de parámetros del sensor con el módulo de visualización y configuración o mediante el PC.

Características del sensor En esta opción del menú se indican características del sensor tales como homologación, conexión a proceso, junta, rango de medición, electrónica, carcasa y otras.

7 Configurar la interface del sensor y Modbus con PACTware

7.1 Conectar el PC

La conexión del PC a la electrónica del sensor se realiza a través del adaptador de interface VEGACONNECT.

Escala de ajuste de parámetros:

Electrónica del sensor

Fig. 37: Conexión del PC a través de adaptador de interface directamente en el sensor

- 1 Cable USB hacia el PC
- 2 Adaptador de interface VEGACONNECT
- 3 Sensor

A la electrónica Modbus La conexión del PC a la electrónica Modbus se realiza a través de un cable USB.

Escala de ajuste de parámetros:

- Electrónica del sensor
- Electrónica Modbus

Fig. 38: Conexión del PC a través de USB a la electrónica Modbus 1 Cable USB hacia el PC

A la línea RS 485

53571-ES-230822

La conexión del PC a la línea RS 485 se realiza a través de un adaptador comercial de interface RS 485/USB.

A la electrónica del sensor

Escala de ajuste de parámetros:

- Electrónica del sensor
- Electrónica Modbus

Información:

Para la parametrización es de necesidad obligatoria, desconectar la conexión hacia RTU

Fig. 39: Conexión del PC mediante el adaptador de interface a la línea RS 485

- 1 Adaptador de interfaces RS 485/USB
- 2 Cable USB hacia el PC
- 3 Línea RS 485
- 4 Sensor
- 5 Alimentación de tensión

7.2 Parametrización

Requisitos

Para la parametrización del equipo a través de una PC Windows es necesario el software de configuración PACTware y un controlador de equipo adecuado (DTM) según la norma FDT. La versión de PAC-Tware actual así como todos los DTM disponibles están resumidos en una DTM-Collection. Además, los DTM pueden integrarse en otras aplicaciones generales según la norma FDT.

Indicaciones:

Para garantizar el soporte de todas las funciones del equipo, debe emplearse siempre la DTM-Collection más nueva. Además, no todas las funciones descritas están dentro de las versiones de firmware antiguas. El software de equipo más nuevo puede bajarse de nuestro sitio Web. En Internet también está disponible una descripción de la secuencia de actualización.

La puesta en marcha restante se describe en el manual de instrucciones " *DTM-Collection/PACTware*", adjunto en cada DTM Collection y con posibilidad de descarga desde Internet. Descripciones más detalladas se encuentra en la ayuda en línea de PACTware y el DTM.

Fig. 40: Ejemplo de una vista DTM

Versión estándar/completa Todos los DTM de equipos están disponibles como versión estándar gratis y como versión completa sujeta a pago. La versión estándar tiene todas las funciones necesarias para una puesta en marcha completa. Un asistente para la organización simple de proyectos facilita la configuración considerablemente. El almacenaje/impresión del proyecto asó como la función de importación/exportación también forman parte de la versión estándar.

> En la versión completa hay además una función de impresión ampliada para la documentación completa del proyecto así como la posibilidad de almacenaje de valores medidos y curvas de ecos. Además, aquí hay disponible un programa para el cálculo de tanques así como un Multiviewer para la indicación y evaluación de los valores medidos y curvas de ecos almacenados.

La versión estándar se puede descargar de <u>www.vega.com/downloads</u> y " *Software*". La versión completa Usted la recibe en un CD a través de su representación correspondiente.

7.3 Ajustar la dirección del equipo

El VEGADIF 85 necesita una dirección, para participar como sensor en la comunicación MODBUS. La configuración de la dirección se realiza vía PC con PACTware/DTM o el Modbus RTU.

Los ajustes de fábrica para la dirección son:

- Modbus: 246
- Levelmaster: 31

Indicaciones:

El ajuste de la dirección del equipo solo es posible online

Vía PC por la electrónica Modbus Iniciar el asistente de proyectos y dejar crear el árbol de proyectos. Ir al símbolo para Modbus-Gateway en el árbol de proyectos. Seleccio-

53571-ES-230822

57

nar "*Parámetro*" con la tecla derecha del ratón, después "*Parametrización Online*" y de esta forma iniciar el DTM para la electrónica Modbus.

En la barra de menú del DTM ir a la flecha de listar al lado del símbolo " *Llave de tornillos*". Seleccionar el punto de menú " *Modificar direcciones en el dispositivo*" y configurar la dirección deseada.

Vía PC por línea RS 485 En el catalogo de dispositivos en " *Controlador*" seleccionar la opción " *Modbus Serial*". Hacer doble clic sobre ese activador, integrándolo de esta forma en el árbol de proyectos.

> Ir al administrador de proyectos de su PC y determinar, en que interface COM está el adaptador USB-/RS 485. Ir al símbolo " *Modbus COM*." en el árbol de proyectos. Con la tecla derecha del ratón seleccionar " *Parámetro*" y de esta forma iniciar el DTM para el adaptador USB-/RS 485. En " *Ajuste básico*" anotar el Nº de la interface COM del Administrador de dispositivos.

> Con la tecla derecha del ratón seleccionar " *Otras funciones*" y " *Búsqueda de dispositivo*". El DTM busca el usuario de Modbus conectado y lo integra en el árbol de proyectos. Ir al símbolo para Modbus-Gateway en el árbol de proyectos. Seleccionar " *Parameter*" con la tecla derecha del ratón, después " *Parametrización Online*" y de esta forma iniciar el DTM para la electrónica Modbus.

En la barra de menú del DTM ir a la flecha de listar al lado del símbolo " *Llave de tornillos*". Seleccionar el punto de menú " *Modificar direcciones en el dispositivo*" y configurar la dirección deseada.

Después ir nuevamente al símbolo "*Modbus COM.*" en el árbol de proyectos. Con la tecla derecha del ratón seleccionar "*Otras funciones*" y "*Modificar direcciones del DTM*". Registrar aquí las direcciones modificadas del Modbus-Gateways.

Vía Modbus-RTULa dirección del dispositivo se configura en el registro Nº 200 del
registro Holding (véase capítulo " Modbus-Register " de esta instruc-
ción de servicio).

El modo de procedimiento dependen del Modbus-RTU correspondiente y la herramienta de configuración.

7.4 Guardar datos de parametrización

Se recomienda la documentación y registro de los datos de parametrización a través de PACTware. De esta forma se encuentran disponible para uso múltiple y para fines de servicio.

8 Poner en funcionamiento el dispositivo de medición

8.1 Medición de nivel

Depósito cerrado

Fig. 41: Configuración de medición preferida para depósitos cerrados

- I VEGADIF 85
- Il Bloque de 3 válvulas
- III Separador
- 1, 5 Válvulas de purga
- 2, 4 Válvulas de entrada
- 3 Válvulas de compensación
- 6, 7 Válvulas de ventilación en el VEGADIF 85
- A, B Válvulas de cierre

Proceder de la forma siguiente:

- 1. Llenar el depósito hasta encima de la toma inferior
- 2. Llenar la instalación de medición con medio

Cerrar válvula 3: Separar lado de alta y de baja presión

Abrir válvulas A y B: Abrir válvulas de cierre

 Purgar lado de alta presión (dado el caso vaciar el lado de baja presión)

Abrir válvulas 2 y 4: Introducir producto en el lado de alta presión

Abrir brevemente las válvulas 6 y 7, cerrándolas después de nuevo: Llenar el lado de alta presión completamente con producto y eliminar el aire

4. Poner el punto de medición en modo de medición

Ahora:

Las válvulas 3, 6 y 7 están cerradas

Válvulas 2, 4, A y B abiertas

Depósito cerrado con superposición de vapor

Fig. 42: Configuración de medición preferida para depósito cerrado con superposición de vapor

- I VEGADIF 85
- II Bloque de 3 válvulas
- III Separador
- IV Depósito de condensado
- 1, 5 Válvulas de purga
- 2, 4 Válvulas de entrada
- 3 Válvulas de compensación
- 6, 7 Válvulas de ventilación en el VEGADIF 85
- A, B Válvulas de cierre

Proceder de la forma siguiente:

- 1. Llenar el depósito hasta encima de la toma inferior
- 2. Llenar la instalación de medición con medio

Abrir válvulas A y B: Abrir válvulas de cierre

Llenar la línea de presión efectiva de baja presión a la altura del depósito de condensado

3. Purgar el equipo, para eso:

Abrir las válvulas 2 y 4: Introducir medio

Abrir válvula 3: Compensación del lado de alta y de baja presión

Abrir las válvulas 6 y 7 brevemente, cerrándolas después de nuevo: Llenar el equipo completamente con preducto y eliminar el aire

4. Poner el punto de medición en modo de medición, para eso:

Cerrar válvula 3: Separar lado de alta y de baja presión Abrir válvula 4: Conectar el lado de baja presión

Ahora:

Las válvulas 3, 6 y 7 están cerradas

Las válvulas 2, 4, A y B abiertas.

8.2 Medición de flujo

Gases

Fig. 43: Configuración de medición preferida para la medición de flujo en gases, conexión a través de un bloque de 3 válvulas, embridable por ambos lados

- I VEGADIF 85
- II Bloque de 3 válvulas
- 2, 4 Válvulas de entrada
- 3 Válvulas de compensación
- 6, 7 Válvulas de ventilación en el VEGADIF 85

Líquidos

Fig. 44: Configuración de medición preferida para líquidos

- I VEGADIF 85
 - II Bloque de 3 válvulas
 - III Separador
 - 1, 5 Válvulas de purga
 - 2, 4 Válvulas de entrada
 - 3 Válvulas de compensación
 - 6, 7 Válvulas de ventilación en el VEGADIF 85
 - A, B Válvulas de cierre

Proceder de la forma siguiente:

- 1. Cerrar la válvula 3
- 2. Llenar la instalación de medición con medio.

Para eso abrir las válvulas A, B (caso de existir) así como 2, 4: entra producto

En caso necesario limpiar las líneas de presión efectiva: para gases soplando con aire comprimido, para líquidos lavando ³⁾

Para eso cerrar las válvulas 2 y 4, para bloquear el equipo.

Después abrir las líneas de presión efectiva, para soplar/enjuagar las líneas de presión efectiva.

Después de la limpieza limpiar las válvulas 1 y 5 (caso de existir)

3. Purgar el equipo, para eso:

Abrir válvulas 2 y 4: El producto entra

Cerrar válvula 4: Se cierra el lado de baja presión

Abrir válvula 3: Compensación del lado de alta y de baja presión

Abrir las válvulas 6 y 7 brevemente, cerrándolas después de nuevo: Llenar el equipo completamente con preducto y eliminar el aire

 Realizar corrección de posición, si se cumplen las condiciones siguientes. Si no se cumplen las condiciones, entonces realizar la corrección de posición después del paso 6.

Condiciones:

El proceso no se puede sellar.

Los puntos de extracción de presión (A y B) están a la misma altura geodésica.

5. Poner el punto de medición en modo de medición, para eso:

Cerrar válvula 3: Separar lado de alta y de baja presión

Abrir válvula 4: Conectar el lado de baja presión

Ahora:

Válvulas 1, 3, 5, 6 y 7 cerradas 4)

Abrir válvulas 2 y 4

Abrir válvulas A y B

6. Realizar la corrección de posición, si es posible bloquear el flujo. En ese caso no procede el paso 5.

- ³⁾ Para configuración con 5 válvulas
- ⁴⁾ Válvulas 1, 3, 5: para configuración con 5 válvulas.

Mantenimiento

contra adherencias

9 Diagnóstico, asset management y servicio

91 Mantenimiento

En caso un uso previsto, no se requiere mantenimiento especial alguno durante el régimen normal de funcionamiento.

Medidas preventivas En algunas aplicaciones las incrustaciones de producto en la membrana pueden influenciar el resultado de medición. Por eso en dependencia del sensor y de la aplicación tomar precauciones para evitar incrustaciones fuertes y especialmente endurecimientos.

Limpieza La limpieza contribuye a que sean visibles la placa de características y las marcas en el equipo.

Para ello hay que observar lo siguiente:

- Emplear únicamente productos de limpieza que no dañen la carcasa, la placa de características ni las juntas
- Utilizar sólo métodos de limpieza que se correspondan con el grado de protección

9.2 Memoria de diagnóstico

El equipo tiene y varias memorias, disponibles con objetos de diagnóstico. Los datos se conservan incluso durante una caída de voltaje.

Memoria de valores Hasta 100.000 valores medidos se pueden almacenar en el sensor medidos en una memoria cíclica. Cada registro contiene fecha/hora, así como el valor medido correspondiente.

> En dependencia de versión de equipo, los valores almacenables son p. Ej.:

- Nivel
- Presión de proceso
- Presión diferencial
- Presión estática
- Valor porcentual
- Valores escalados
- Salida de corriente
- Porcentaie lineal
- Temperatura de la celda de medida
- Temperatura de la electrónica

La memoria de valores de medición se encuentra activa en el estado de entrega y registra cada 10 s el valor de presión y la temperatura de la célula de medición, con presión diferencial electrónica además también la presión estática.

Los valores deseados y las condiciones de registro se determinan a través de una PC con PACTware/DTM o el sistema de control con EDD. Por esta vía se leen o se restauran los datos.

Memoria de eventos Hasta 500 eventos son almacenados automáticamente con cronosellador en el sensor de forma imborrable. Cada registro contiene fecha/ hora, tipo de evento, descripción del evento y valor.

Tipos de eventos son p. Ej.:

- Modificación de un parámetro
- Puntos de tiempo de conexión y desconexión
- Mensajes de estado (según NE 107)
- Avisos de error (según NE 107)

Los datos se leen con una PC con PACTware/DTM o el sistema de control con EDD.

9.3 Función Asset-Management

El equipo dispone de un autocontrol y de un diagnóstico según NE 107 y VDI/VDE 2650. Para los mensajes de estado representados en la tabla siguiente pueden verse mensajes de error detallados bajo el punto de menú " *Diagnóstico*" a través de la herramienta operativa correspondiente.

Señal de estado

Los avisos de estado se subdividen en las categorías siguientes:

- Fallo
- Control de funcionamiento
- Fuera de la especificación
- Necesidad de mantenimiento

y explicado mediante pictogramas

Fig. 45: Pictogramas de mensajes de estado

- 1 Fallo (Failure) rojo
- 2 Fuera de la especificación (Out of specification) amarillo
- 3 Control de funcionamiento (Function check) naranja
- 4 Necesidad de mantenimiento (Maintenance) azul

Fallo (Failure):

A causa de un fallo de funcionamiento detectado en el equipo, el equipo emite una señal de fallo.

Este mensaje de estado siempre está activo. No puede ser desactivado por el usuario.

Control de funcionamiento (Function check):

Se esta trabajando en el equipo, el valor de medición es temporalmente inválido (p. ej. durante la simulación).

Este mensaje de estado se encuentra inactivo por defecto.

Fuera de la especificación (Out of specification):

El valor de medición es inseguro, ya que se ha excedido la especificación del equipo (p. ej. temperatura de la electrónica).

Este mensaje de estado se encuentra inactivo por defecto.

Necesidad de mantenimiento (Maintenance):

El funcionamiento del equipo está limitado por factores externos. La medición está afectada, pero el valor de medición sigue siendo válido aún. Planificar el mantenimiento del equipo, ya que se espera un fallo en un futuro próximo (p. ej. por adherencias).

Este mensaje de estado se encuentra inactivo por defecto.

Failure

Código Mensaie de texto	Causa	Corrección	DevSpec State in CMD 48
	Sobroprosión o doprosión	Combier coldo do modición	Buto 5 bit 0 do
FUI3 Ningún valor do modida	Colda do modida dofoctuosa	Enviar el equipe a reparación	byte 0 5
válido disponible	Celua de medida delectuosa		
F017	Ajuste no dentro de la especi-	Modificar ajuste de acuerdo con	Byte 5, bit 1 de
Margen de ajuste muy pequeño	ficación	los valores límites	byte 0 5
F025	Los puntos de interpolación no	Comprobar tabla de linealiza-	Byte 5, bit 2 de
Error en la tabla de li-	aumentan continuamente, p. ej.	ción	byte 0 5
nealizacion		Borrar tabla/crear tabla nueva	
F036 Ningún software de	Actualización del software fraca- sada o interrumpida	Repetir actualización del sof- tware	Byte 5, bit 3 de byte 0 5
sensor ejecutable		Comprobar la versión electró- nica	
		Cambiar electrónica	
		Enviar el equipo a reparación	
F040	Defecto de hardware	Cambiar electrónica	Byte 5, bit 4 de
Error en la electrónica		Enviar el equipo a reparación	byte 0 5
F041	Ninguna conexión hacia la elec-	Comprobar conexión entre el	-
Error de comunicación	trónica del sensor	sensor y la electrónica principal (con versión separada)	
F080	Error general de software	Desconectar momentáneamen-	Byte 5, bit 5 de
Error general de sof- tware		te la tensión de alimentación	byte 0 5
F105	El equipo está todavía en la fa-	Esperar final de la fase de co-	Byte 5, bit 6 de
Determinando valor	se de arranque, todavía no se ha podido determinar el valor medido	nexión	byte 0 5
F113	Error en la comunicación interna	Desconectar momentáneamen-	Byte 4, bit 4 de
Error de comunicación	del equipo	te la tensión de alimentación	byte 0 5
		Enviar el equipo a reparación	
F260	Error en la calibración ejecutada	Cambiar electrónica	Byte 4, bit 0 de
Error en la calibración	de fabrica Error en el EEPROM	Enviar el equipo a reparación	byte 0 5
F261	Error durante la puesta en mar-	Repetir puesta en marcha	Byte 4, bit 1 de
Error en el ajuste del	cha	Repetir reset	byte 0 5
equipo	Erro durante la ejecución de un reset		

Código Mensaje de texto	Causa	Corrección	DevSpec State in CMD 48
F264 Error de montaje/pues- ta en marcha	Ajustes inconsistentes (p. Ej.: Distancia, unidades de ajuste en caso de aplicación presión de proceso) para la aplicación seleccionada Configuración del sensor inva- lida (p. Ej.: aplicación presión diferencial electrónica con celda de medición de presión diferen- cial conectada)	Modificar ajustes Modificar configuración del sen- sor o aplicación conectada	Byte 4, bit 2 de byte 0 5
F265 Función de medición in- terrumpida	El sensor no realiza mas ningu- na medición	Ejecutar un reset Desconectar momentáneamen- te la tensión de alimentación	Byte 4, bit 3 de byte 0 5

Tab. 7: Códigos de error y mensajes de texto, indicaciones para la causa y para la eliminación

Function check

Código	Causa	Corrección	DevSpec
Mensaje de texto			State in CMD 48
C700	Una simulación está activa	Simulación terminada	"Simulation Active"
Simulación activa		Esperar finalización automática después de 60 min.	en "Estado estan- darizado 0"

Tab. 8: Códigos de error y mensajes de texto, indicaciones para la causa y para la eliminación

Out of specification

Código Mensaje de texto	Causa	Corrección	DevSpec State in CMD 48
S600 Temperatura de la elec- trónica inadmisible	Temperatura de la electrónica no en el rango especificado	Comprobar la temperatura am- biente Aislar la electrónica	Byte 23, Bit 0 del Byte 14 24
S603 Tensión de alimenta- ción no permitida	Tensión de trabajo debajo del rango especificado	Comprobar conexión eléctrica Aumentar la tensión de alimen- tación si fuera preciso	-
S605 Valor de presión no per- mitido	Presión de proceso medida por debajo o por encima del rango de ajuste	Comprobar el rango de medi- ción nominal del equipo Dado el caso, emplear un equi- po con un rango de medición mayor	-

Maintenance

Código	Causa	Corrección	DevSpec
Mensaje de texto			State in CMD 48
M500 Error on al astada da	Durante el reset al estado de suministro no se pudieron res-	Repetir reset	Bit 0 de Byte 14 24
suministro	taurar los datos	tos del sensor en el sensor	

Código	Causa	Corrección	DevSpec
Mensaje de texto			State in CMD 48
M501	Los puntos de interpolación no	Comprobar tabla de linealiza-	Bit 1 de
Error en la tabla de li-	aumentan continuamente, p. ej.	cion	Byte 14 24
nealización no activa	pares de valores llogicos	Borrar tabla/crear tabla nueva	
M502	Error de hardware EEPROM	Cambiar electrónica	Bit 2 de
Error en la memoria de		Enviar el equipo a reparación	Byte 14 24
eventos			
M504	Defecto de hardware	Cambiar electrónica	Bit 3 de
Error en una interface		Enviar el equipo a reparación	Byte 14 24
del equipo			
M507	Error durante la puesta en mar-	Ejecutar reset y repetir puesta	Bit 4 de
Error en el ajuste del	cha	en marcha	Byte 14 24
equipo	Erro durante la ejecución de		
	un reset		

9.4 Eliminar fallos

Comportamiento en caso Es responsabilidad del operador de la instalación, la toma de medide fallos das necesarias para la eliminación de los fallos ocurridos. Eliminación de fallo Las primeras medidas son: Evaluación de mensajes de error Control de la señal de salida Tratamiento de errores de medición Un smartphone/una tableta con la aplicación de configuración o un PC/portátil con el software PACTware y el correspondiente DTM ofrecen otras posibilidades exhaustivas de diagnóstico. En muchos casos es posible determinar las causas de este modo y eliminar así los fallos. Comportamiento des-En dependencia de la causa de interrupción y de las medidas tomapués de la eliminación de das hay que realizar nuevamente en caso necesario los pasos de fallos procedimiento descritos en el capítulo " Puesta en marcha". Línea directa de asisten-Si estas medidas no produjeran ningún resultado, en casos urgencia técnica - Servicio 24 tes póngase en contacto con la línea directa de servicio de VEGA horas llamando al número +49 1805 858550. El servicio de asistencia técnica está disponible también fuera del horario normal de trabajo, 7 días a la semana durante las 24 horas. Debido a que ofertamos este servicio a escala mundial, el soporte se realiza en idioma inglés. El servicio es gratuito, el cliente solo paga la tarifa telefónica normal. 9.5 Recambio de bridas de proceso Las bridas de proceso pueden ser sustituidas por el usuario por otras

de un tipo idéntico siempre que sea necesario.

Preparación

Piezas de repuesto requeridas, dependiendo de la especificación del pedido:

- Bridas de proceso
- Juntas
- Tornillos, tuercas

Herramientas necesarias:

• Llave e/c 13

Se recomienda llevar a cabo los trabajos sobre una superficie limpia y llana, p. ej un banco de trabajo.

Cuidado:

Existe riesgo de lesiones debido a restos de medios de proceso en las bridas de proceso. Tome las medidas de precaución apropiadas al respecto.

Desmontaje

Proceder de la forma siguiente:

- 1. Aflojar en cruz los tornillos hexagonales con la llave
- 2. Retirar cuidadosamente las bridas de proceso sin dañar la celda de medición de presión diferencial
- 3. Retirar las juntas tóricas de las ranuras de las bridas de proceso empleando una herramienta con punta
- 4. Limpiar las ranuras de las juntas tóricas y las membranas de separación con un limpiador adecuado y un paño suave

Indicaciones:

Observar la limpieza adicional en caso de una versión sin aceite y sin grasa

Montaje

Proceder de la forma siguiente:

- Colocar juntas tóricas nuevas y sin daños en las ranuras, comprobar que sientan bien
- Montar las bridas de proceso cuidadosamente en la celda de medición de presión diferencial, la junta tiene que permanecer con ello dentro de la ranura
- 3. Emplear tornillos y tuercas en perfecto estado, enroscar y apretar en cruz
- 4. Apretar primero con 8 Nm, reapretar después con 12 Nm
- 5. Finalmente, apretar firmemente con 16 Nm con 160 bar, 18 Nm con 400 bar, 22 Nm con juntas de cobre.

Con ello ha concluido el recambio de las bridas de proceso.

Indicaciones:

Despué sdel montaje del equipo, lleve a cabo de nuevo una corrección de posición en el punto de medición.

9.6 Cambiar módulo de proceso con versión IP68 (25 bar)

Con la versión IP68 (25 bar) el usuario puede cambiar el módulo de proceso localmente. El cable de conexión y la carcasa externa se pueden conservar.

Herramientas necesarias:

Llave Allen, tamaño 2

Cuidado:

El recambio solo se puede realizar en estado libre de tensión

En aplicaciones Ex, solamente puede emplearse una pieza de recambio con homologación Ex correspondiente.

Cuidado:

Durante el cambio, proteger los lados interiores contra suciedad y humedad.

Para el cambio proceder de la forma siguiente:

- 1. Soltar el tornillo prisionero con la llave Allen
- 2. Sacar el módulo de cables con cuidado del módulo de proceso

Fig. 46: VEGADIF 85 en versión IP68 25 bar y salida de cable lateral, carcasa externa

- 1 Módulo de proceso
- 2 Conector enchufable
- 3 Tornillo prisionero
- 4 Módulo de cables
- 5 Cable de conexión
- 6 Carcasa externa
- 3. Soltar acoplamiento de enchufe
- 4. Montar módulo de proceso nuevo en el punto de medida
- 5. Enchufar de nuevo el acoplamiento de enchufe
- 6. Insertar el módulo de cables en el módulo de proceso y girarlo a la posición deseada

7. Apretar el tornillo prisionero con la llave Allen

Con esto termina el recambio.

El número de serie necesario para ello se encuentra en la placa de tipos del equipo o en el albarán.

9.7 Cambiar módulo electrónico

En caso de defecto el módulo electrónico puede ser recambiado por uno de tipo idéntico por el usuario.

En caso de aplicaciones Ex solamente se puede emplear un equipo y un módulo electrónico con la homologación Ex correspondiente.

Encontrará información detallada acerca del cambio de la electrónica en el manual de instrucciones del módulo electrónico.

9.8 Actualización del software

Para actualizar el software del equipo se necesitan los componentes siguientes:

- Equipo
- Alimentación de tensión
- Adaptador de interface VEGACONNECT
- PC con PACTware
- Software actual del equipo en forma de archivo

El software actual del instrumento así como informaciones detalladas sobre el modo de procedimiento se encuentran en la zona de descarga en <u>www.vega.com</u>

Las informaciones para la instalación se encuentran en el archivo de descarga.

Cuidado:

Los equipos con homologación pueden estar unidos a determinados estados del software. Para eso asegurar, que la homologación permanezca efectiva durante una actualización del Software.

Informaciones detalladas se encuentran en la zona de descarga en www.vega.com.

9.9 Procedimiento en caso de reparación

En nuestra página web encontrará información detallada sobre el procedimiento en caso de reparación.

Para que podamos realizar la reparación rápidamente y sin tener que hacer preguntas, genere allí una hoja de retorno de equipo con los datos de su equipo.

Para ello necesita:

- El número de serie del equipo
- Una breve descripción del problema
- Datos relativos al producto

Imprimir la hoja de retorno de equipo generada.

Limpiar el equipo y embalarlo a prueba de rotura.

Enviar junto con el equipo la hoja de retorno de equipo impresa y, dado el caso, una hoja de datos de seguridad.

La dirección para el retorno se indica en la hoja de retorno de equipo generada.

10 Desmontaje

10.1 Pasos de desmontaje

Para el desmontaje del equipo, lleve a cabo en el orden inverso los pasos descritos en los capítulos " *Montaje*" y " *Conectar a la alimentación de tensión*".

Advertencia:

Al llevar a cabo el desmontaje, preste atención a las condiciones de proceso dentro de los depósitos o de las tuberías. Existe riesgo de lesiones p. ej. debido a las altas presiones o temperaturas y a los medios agresivos o tóxicos. Tome las medidas de protección correspondientes para prevenirlo.

10.2 Eliminar

Entregue el equipo directamente a una empresa de reciclaje especializada y no utilice para ello los puntos de recogida municipales.

Retire primero las baterías que pudiera haber, siempre que sea posible retirarlas del equipo, y proceda a eliminarlas por separado de la forma debida.

Si hubiera guardados datos personales en el equipo usado por eliminar, hay que borrarlos antes de proceder a la eliminación del equipo.

Si no tiene posibilidades, de reciclar el equipo viejo de forma especializada, consulte con nosotros acerca de las posibilidades de reciclaje o devolución.

11 Anexo

11.1 Datos técnicos

Nota para equipos homologados

Para equipos homologados (p. ej. con aprobación Ex) rigen los datos técnicos de las correspondientes indicaciones de seguridad. Estos pueden diferir de los datos aquí aducidos por ejemplo para las condiciones de proceso o para la alimentación de tensión.

Todos los documentos de homologación se pueden descargar de nuestra página web.

Materiales y pesos			
Material 316L equivale a acero inoxidable 1.4404 o 1.4435			
Materiales, en contacto con el medio			
- Conexión a proceso, bridas laterales	316L, Alloy C276 (2.4819), Superdúplex (1.4410)		
- Membrana de separación	316L, Alloy C276 (2.4819), 316L/1.4404 6 μm revestimiento de oro		
- Junta	FKM (ERIKS 514531), EPDM (ERIKS 55914)		
 Sello al montar el separador 	Anillo obturador de cobre		
 Tapones roscados 	316L		
 Válvulas de purga 	316L		
Líquido separador			
 Aplicaciones estándar 	Aceite silicónico		
 Aplicaciones de oxigeno 	Aceite halocarbónico 5)		
Materiales, sin contacto con el medio			
- Carcasa de la electrónica	Plástico PBT (Poliéster), fundición a presión de aluminio recubierta de polvo, 316L		
- Prensaestopas	PA, acero inoxidable, latón		
 Junta prensaestopas 	NBR		
 Tapón prensaestopas 	PA		
– Carcasa externa	Plástico PBT (Poliéster), 316L		
 Zócalo, placa de montaje mural carca- sa electrónica externa 	Plástico PBT (Poliéster), 316L		
 Junta entre el zócalo de la carcasa y la placa de montaje mural 	TPE (conectado fijo)		
– Junta tapa de la carcasa	Silicona SI 850 R, NBR sin silicona		
- Mirilla en la tapa de la carcasa	Policarbonato (UL-746-C listado), vidrio 6)		
 Tornillos y tuercas para bridas late- rales 	PN 160 y PN 400: tornillo hexagonal DIN 931 M8 x 85 A4-70 (1.4404/316L), tuerca hexago- nal DIN 934 M8 A4-70 (1.4404/316L)		
 Terminal de conexión a tierra 	316Ti/316L		
 Cable de conexión entre el sensor IP68 y la carcasa de la electrónica externa 	PE, PUR		

⁵⁾ Observar los límites de temperatura de proceso divergentes

⁶⁾ Vidrio con carcasa de aluminio y fundición de precisión de acero inoxidable

53571-ES-230822

 Soporte de la placa de tipos con versión IP68 en cable 	PE-duro
Peso	aprox. 4,2 4,5 kg (9.26 9.92 lbs), según conexión a proceso
Pares de fuerzas máximos	
Tuercas de fijación, estribo para brazo de soporte	30 Nm (22.13 lbf ft)
Tornillos de montaje para adaptador de brida oval, bloque de válvulas y brazo de soporte al módulo de proceso	25 Nm (18.44 lbf ft)
Válvulas de purga, tapones roscados 7)	18 Nm (13.28 lbf ft)
Tornillos de montaje para módulo de proc	eso
- 160 bar	16 Nm (11.80 lbf ft)
- 400 bar	18 Nm (13.28 lbf ft)
Tornillos de zócalo carcasa externa	5 Nm (3.688 lbf ft)
Prensaestopas de NPT y tubos Conduit	
 Carcasa de plástico 	10 Nm (7.376 lbf ft)
- Carcasa de aluminio/acero inoxidable	50 Nm (36.88 lbf ft)

Magnitud de entrada

Rangos de medición en bar

Rango de medición	Rango nominal de medición	Rango máximo de ajuste
10 mbar	-10 mbar +10 mbar	-12 mbar +12 mbar
30 mbar	-30 mbar +30 mbar	-36 mbar +36 mbar
100 mbar	-100 mbar +100 mbar	-120 mbar +120 mbar
500 mbar	-500 mbar +500 mbar	-600 mbar +600 mbar
3 bar	-3 bar +3 bar	-3,6 bar +3,6 bar
16 bar	-16 bar +16 bar	-19,2 bar +19,2 bar
40 bar	-40 bar +40 bar	-48 bar +48 bar

Rangos de medición en psi

Rango de medición	Rango nominal de medición	Rango máximo de ajuste
0.15 psig	-0.15 psig +0.15 psig	-0.18 psig +0.18 psig
0.45 psig	0.45 psig +0.45 psig	-0.54 psig +-0.54 psig
1.5 psig	-1.5 psig +1.5 psig	-1.8 psig +1.8 psig
7.5 psig	-7.5 psig +7.5 psig	-9 psig +9 psig
45 psig	-45 psig +45 psig	-5.4 psig +5.4 psig
240 psig	-240 psig +240 psig	-288 psig +288 psig
580 psig	-580 psig +580 psig	-696 psig +696 psig

7) 4 capas de PTFE

Rangos de medición en kPa

Rango de medición	Rango nominal de medición	Rango máximo de ajuste
1 kPa	-1 kPa +1 kPa	-1,2 kPa +1,2 kPa
3 kPa	-3 kPa +3 kPa	-3,6 kPa +3,6 kPa
10 kPa	-10 kPa +10 kPa	-12 kPa +12 kPa
50 kPa	-50 kPa +50 kPa	-60 kPa +60 kPa
300 kPa	-300 kPa +300 kPa	-360 kPa +360 kPa
1600 kPa	-1600 kPa +1600 kPa	-1920 kPa +1920 kPa
4000 kPa	-4000 kPa +4000 kPa	-4800 kPa +4800 kPa

Turn Down

Turn Down máximo permisible

llimitado (recomendado hasta 20 : 1)

Turn down (TD) es la relación rango nominal de medición/margen ajustado

23 s
Señal digital de salida según la norma EIA-485
Modbus Application Protocol V1.1b3, Modbus over serial line V1.02
Modbus RTU, Modbus ASCII, Levelmaster
57,6 Kbit/s
atura de la celda de medida
-40 +85 °C (-40 +185 °F)
1 K
±1 K
A través del módulo de visualización y configuración
A través de la salida de corriente, la salida de corriente adicional
A través de la señal de salida (dependiendo de la ver- sión de la electrónica)

Condiciones de referencia y factores de influencia (según DIN EN 60770-1)

 Condiciones de referencia según DIN EN 61298-1

 - Temperatura
 +18 ... +30 °C (+64 ... +86 °F)

 - Humedad relativa del aire
 45 ... 75 %

 - Presión de aire
 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Definición curva característica	Ajuste del punto limite según la norma IEC 61298-2
Curva característica	Lineal
Posición de calibración de la celda de medida	Vertical, es decir, módulo de proceso vertical
Influencia posición de montaje	<0,35 mbar/20 Pa (0.003 psig) por cada 10° de inclinación en torno al eje transversal
Material bridas laterales	316L

Desviación en la salida de corriente debido a campos electromagnéticos fuertes de alta frecuencia

- Dentro del marco de EN 61326-1 < ±80 μA
- Dentro del marco de IACS E10 (cons- <= $\pm 160 \mu A$ trucción naval)/IEC 60945

Desviación de medición determinada según el método de punto límite IEC 60770 ó IEC 61298

La desviación de medición comprende la alinealidad , la histéresis y la irrepetibilidad.

Los valores valen para la salida de señal **digital** (HART, Profibus PA, Foundation Fieldbus) y para la salida de corriente **analógica** 4 ... 20 mA. Con la presión diferencial se refieren al margen de medición ajustado, con la presión estática al valor final de rango de medición. Turn down (TD) es la relación rango de medición nominal/margen de medición ajustado.

Presión diferencial

Rango de medición	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1
10 mbar (1 kPa)/0.145 psi	- 10.1.9/	< ±0,02 % x TD	
30 mbar (3 kPa)/0.44 psi	< ±0,1 %		
100 mbar (10 kPa)/1.5 psi	< ±0,065 %		< ±0,035 % + 0,01 % x TD
500 mbar (50 kPa)/7.3 psi			
3 bar (300 kPa)/43.51 psi			< ±0,015 % + 0,005 % x TD
16 bar (1600 kPa)/232.1 psi			< ±0,035 % + 0,01 % x TD

Presión estática

Rango de medición	Hasta presión nominal ⁸⁾	TD 1:1
10 mbar (1 kPa)/0.145 psi	40 hor (4000 kPa)	
30 mbar (3 kPa)/0.44 psi	40 bar (4000 kPa)	
100 mbar (10 kPa)/1.5 psi		
500 mbar (50 kPa)/7.3 psi	160 bar (16000 kPa)	< ±0,1 %
3 bar (300 kPa)/43.51 psi	0 400 bar (40000 kPa)	
16 bar (1600 kPa)/232.1 psi		

Flujo > 50 %⁹⁾

8) Valor final de rango de medición presión absoluta

⁹⁾ Característica radicada

Rango de medición	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1	
10 mbar (1 kPa)/0.145 psi	< 10.1.9/			
30 mbar (3 kPa)/0.44 psi	< ±0,1 %		< ±0,02 % X T D	
100 mbar (10 kPa)/1.5 psi	< ±0,065 %		< ±0,035 % + 0,01 % x TD	
500 mbar (50 kPa)/7.3 psi			< ±0,015 % + 0,005 % x TD	
3 bar (300 kPa)/43.51 psi				
16 bar (1600 kPa)/232.1 psi			< ±0,035 % + 0,01 % x TD	

25 % < Flujo ≤ 50 %¹⁰⁾

Rango de medición	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1
10 mbar (1 kPa)/0.145 psi	< 10.0 %	< ±0,04 % x TD	
30 mbar (3 kPa)/0.44 psi	< ±0,2 %		
100 mbar (10 kPa)/1.5 psi	< ±0,13 %		< ±0,07 % + 0,02 % x TD
500 mbar (50 kPa)/7.3 psi			< ±0,03 % + 0,01 % x TD
3 bar (300 kPa)/43.51 psi			
16 bar (1600 kPa)/232.1 psi			< ±0,07 % + 0,02 % x TD

Influencia de la temperatura del producto o de la temperatura ambiente

Vale para aparatos en la versión básica con salida de señal **digital**. Los datos se refieren al margen de medición ajustado. Turn down (TD) = Rango de medición nominal/margen de medición ajustado.

Cambio térmico señal de cero y margen de salida presión diferencial¹¹⁾

Rango de medición	-10 +60 °C / +14 +140 °F	-4010 °C / -40 +14 °F und +60 +85 °C /+140 +185 °F
10 mbar (1 kPa)/0.145 psi	< ±0,15 % + 0,20 % x TD	< ±0,4 % + 0,3 % x TD
30 mbar (3 kPa)/0.44 psi	< ±0,15 % + 0,10 % x TD	< ±0,2 % + 0,15 % x TD
100 mbar (10 kPa)/1.5 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD
500 mbar (50 kPa)/7.3 psi		< ±0,2 % + 0,06 % x TD
3 bar (300 kPa)/43.51 psi	< ±0,15 % + 0,05 % X TD	
16 bar (1600 kPa)/232.1 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD

Cambio térmico señal de cero y margen de salida presión estática¹²⁾

- 10) Característica radicada
- ¹¹⁾ Referido al margen de medición ajustado.
- ¹²⁾ Referido al valor final de rango de medición.

Rango de medición	Hasta presión nominal ¹³⁾	-40 +80 °C / -40 +176 °F	
10 mbar (1 kPa)/0.145 psi	40 bor (4000 kBo)		
30 mbar (3 kPa)/0.44 psi	40 Dai (4000 KFa)	< ±0,5 %	
100 mbar (10 kPa)/1.5 psi			
500 mbar (50 kPa)/7.3 psi	160 bar (16000 kPa)		
3 bar (300 kPa)/43.51 psi	0 400 bar (40000 kPa)		
16 bar (1600 kPa)/232.1 psi			

Influencia de la presión estática

Los valores valen para la salida de señal **digital** (HART, Profibus PA, Foundation Fieldbus) y para la salida de corriente **analógica** de 4 ... 20 mA y se refieren al margen de medición ajustado. Turn down (TD) es la relación rango de medición nominal/margen de medición ajustado.

Variación señal de cero y margen de salida

Rango nominal de me- dición	Hasta presión nomi- nal ¹⁴⁾	Influjo sobre el pun- to cero	Influjo sobre el margen	
10 mbar (1 kPa), (0.145 psi)	40 bar (4000 kPa),	< ±0,10 % x TD	< ±0,10 %	
30 mbar (3 kPa), (0.44 psi)	(600 psi)			
100 mbar (10 kPa), (1.5 psi)		160 bar (16000 kPa),	160 bar(16000 kPa),	
500 mbar (50 kPa),		(2400 psi):	(2400 psi):	
(7.3 psi)		< ±0,10 % x TD	< ±0,10 %	
3 bar (300 kPa), (43.51 psi)	400 bar (4000 kPa), (5800 psi)	400 bar(4000 kPa), (5800 psi):	400 bar(4000 kPa), (5800 psi):	
16 bar (1600 kPa), (232.1 psi)		≤ 0,25 % x TD	≤ 0,25 %	

Estabilidad a largo plazo (según DIN 16086)

Vale para la salida de señal **digital** correspondiente (HART, Profibus PA, Foundation Fieldbus) y para la salida de corriente **analógica** de 4 ... 20 mA bajo condiciones de referencia. Turn down (TD) es la relación rango de medición nominal/margen de medición ajustado.

La estabilidad a largo plazo de la señal de cero y del margen de salida equivale al valorF_{stab} en el capítulo " *Cálculo de la desviación total (según DIN 16086)*".

Estabilidad a largo plazo señal de cero y margen de salida

Magnitud da madiaián	Rango de tiempo			
Magnitud de medición	1 año	5 años	10 años	
Presión diferencial ¹⁵⁾	< 0,065 % x TD	< 0,1 % x TD	< 0,15 % x TD	
Presión estática 16)	< ±0,065 %	< ±0,1 %	< ±0,15 %	

¹³⁾ Valor final de rango de medición presión absoluta.

- ¹⁴⁾ Valor final de rango de medición presión absoluta.
- ¹⁵⁾ Referido al margen de medición ajustado.
- ¹⁶⁾ Referido al valor final de rango de medición.

Condiciones de proceso

Temperatura de proceso 17)

Material junta	Aceite de relleno	Límites de temperatura
FKM (ERIKS 514531)	Aceite silicónico	-20 +105 °C (-4 +221 °F)
	Aceite halocarbónico para aplica- ción de oxígeno	-10 +60 °C (-4 +140 °F)
PTFE	Aceite silicónico	-40 +105 °C (-40 +221 °F)
	Aceite halocarbónico para aplica- ción de oxígeno	-10 +60 °C (-4 +140 °F)
Cobre	Aceite silicónico	-40 +105 °C (-40 +221 °F)
	Aceite halocarbónico para aplica- ción de oxígeno	-10 +60 °C (-4 +140 °F)
EPDM (ERIKS 55914)	Aceite silicónico	-40 +105 °C (-40 +221 °F)
	Aceite halocarbónico para aplica- ción de oxígeno	-10 +60 °C (-4 +140 °F)

Presión de proceso 18)

Rango nominal de medición	Presión de proce- so máx. permitida (MWP)	Sobrecarga unila- teral (OPL)	Sobrecarga bilate- ral (OPL)	Presión estática mín. permitida
10 mbar (1 kPa)	40 bar (4000 kPa)	40 bor (4000 kBa)	60 bor (6000 kBo)	
30 mbar (3 kPa)	40 Dai (4000 KFa)	40 Dai (4000 KFa)	00 Dai (0000 KFa)	
100 mbar (10 kPa)	160 bar (16000 kPa)	160 bar (16000 kPa)	240 bar (24000 kPa)	1 mbor (100 Po)
500 mbar (50 kPa)				TINDAI _{abs} (TOO Fa _{abs})
3 bar (300 kPa)	160 bar (16000 kPa)	160 bar (16000 kPa)	240 bar (24000 kPa)	
16 bar (1600 kPa)	400 bar (40000 kPa)	400 bar (40000 kPa)	630 bar (63000 kPa)	

Rango nominal de medición	Presión de proce- so máx. permitida (MWP)	Sobrecarga unila- teral (OPL)	Sobrecarga bilate- ral (OPL)	Presión estática mín. permitida
0.15 psig	590 1 paig	590 1 poig	970 0 poig	
0.45 psig	560. i psig	560. i psig	670.2 psig	
1.5 psig	2320 psig	2320 psig	3481 psig	0.015 poi
7.5 psig				0.015 psi
45 psig	2320 psig	2320 psig	3481 psig	
240 psig	- 2002 psig	Sous heid	9137 psig	

Esfuerzo mecánico

- ¹⁷⁾ Durante la entrada en la conexión a proceso, conexión a través de un bloque de válvulas, ventilación breve, sin flujo permanente por las cámaras de medición
- ¹⁸⁾ Temperatura de referencia +25 °C (+77 °F).

Resistencia a la vibración

4 g a 5 ... 200 Hz según EN 60068-2-6 (Vibración en caso de resonancia)

Resistencia a choques térmicos

50 g, 2,3 ms según EN 60068-2-27 (choque mecánico) ¹⁹

Condiciones ambientales

Versión	Temperatura ambiente	Temperatura de almacenaje y trans- porte
Versión estándar	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Versión IP66/IP68, (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Versión IP68 (25 bar), con cable de co- nexión PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Versión IP68 (25 bar) con cable de co- nexión PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Datos electromecánicos - versión IP66/IP67 e IP66/IP68 (0,2 bar) 20)

Opciones de la entrada de cable

- Entrada de cables
- Prensaestopas
- Tapón ciego
- Tapón roscado

M20 x 1,5; ½ NPT M20 x 1,5; ½ NPT (ø cable véase tabla abajo) M20 x 1,5; ½ NPT ½ NPT

Material prensaestopas/inserto	Diámetro de cable			
de junta	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	\checkmark	√	-	√
Latón, niquelado/NBR	\checkmark	\checkmark	-	-
Acero inoxidable/NBR	-	-	√	-

Sección del cable (Bornes elásticos)

- Cable macizo, hilo
- Hilo con terminal

0,2 ... 2,5 mm² (AWG 24 ... 14) 0,2 ... 1,5 mm² (AWG 24 ... 16)

Datos electromecánicos - versión IP68 (25 bar)

Cable de conexión datos mecánicos

- Estructura	Conductor, descarga de presión, capilar compensa- dor de presión, trenzado de apantallamiento, película metálica, camisa
 Longitud estándar 	5 m (16.40 ft)
 Longitud máxima 	50 m (164.0 ft)
 Radio de flexión mín. (para 25 °C/77 °F) 	25 mm (0.985 in)
- Diámetro	apróx. 8 mm (0.315 in)

¹⁹⁾ 2 g con la versión de carcasa de acero inoxidable de dos cámaras

²⁰⁾ IP66/IP68 (0,2 bar) solo con presión absoluta.

- Color PE	Negro
- Color PUR	Azul
Cable de conexión datos eléctricos	
 Sección de conductor 	0,5 mm² (AWG Nº 20)
- Resistencia del conductor R	0,037 Ω/m (0.012 Ω/ft)

Interface para la unidad externa de visualización y configuración

· ·	
Transmisión de datos	digital (bus I ² C)

Línea de conexión

Cuatro hilos

Versión del sensor	Estructura del cable de conexión			
	Longitud de cable	Línea estándar	Blindado	
4 20 mA/HART	50 m	•	_	
Modbus	50 M	•	_	
Profibus PA, Foundation Fieldbus	25 m	-	•	

Día, mes año
12 h/24 h
CET
10,5 min/año

Magnitud de salida adicional - temperatura de la electrónica			
Rango	-40 +85 °C (-40 +185 °F)		
Resolución	< 0,1 K		
Error de medición	±3K		
Disponibilidad de los valores de tempera	tura		
- Visualización	A través del módulo de visualización y configuración		
- Salida	A través de la señal de salida correspondiente		
Alimentación de tensión			
Tensión de servicio	8 30 V DC		
Consumo de energía máx	520 mW		
Protección contra polarización inversa	Integrada		
Uniones de potencial y medidas eléctricas de separación en el equipo			
Electrónica	Sin conexión al potencial		
Separación galvánica			

- entre la electrónica y las partes metá- Voltaje de referencia 500 V AC licas del equipo
- entre alimentación de tensión y cables Voltaje de referencia 500 V AC de comunicación Modbus

Conexión conductora

Medidas de protección eléctrica

Material de la carcasa	Versión	Grado de protección según IEC 60529	Tipo de protección según NEMA
Plástico		IP66/IP67	Type 4x
Aluminio	Dos cámaras	IP66/IP68 (0,2 bar)	Туре 6Р
Acero inoxidable, fundición de pre- cisión			
Acero inoxidable (Sensor de valo- res medidos, versión con carcasa externa)		IP68 (25 bar)	-

Conexión de la fuente de alimentación Redes de la categoría de sobretensión III de suministro

Altura sobre el nivel del mar

 por defecto 	hasta 2000 m (6562 ft)
 – con protección contra la sobretensión preconectada 	hasta 5000 m (16404 ft)
Grado de contaminación ²¹⁾	4
Grado de protección (IEC 61010-1)	11

11.2 Comunicación del equipo Modbus

A continuación se describen los detalles específicos del equipo requeridos. Más información sobre Modbus PA se puede encontrar en <u>www.modbus.org</u>.

Parámetros para la comunicación de bus

VEGADIF 85 está preajustado con los valores por defecto siguientes:

Parámetro	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1, 2	1
Address range Modbus	1 255	246

Los bits de arranque y de datos no se pueden modificar

Configuración general del host

El intercambio de datos con estado y variables entre el dispositivo de campo y el servidor se realiza a través de registro. Para eso es necesaria una configuración en el servidor. Números de coma deslizante con exactitud simple (4 Bytes) según IEEE 754 se transmiten con disposición de libre selección de los bytes de datos (Byte transmission order). Ese " *Byte transmission order*" se especifica en el parámetro " *Format Code*". De esta forma el RTU conoce los registros del VEGADIF 85, que hay que consultar para las informaciones de variable y de estado.

²¹⁾ Cuando se utiliza con tipo de protección de carcasa cumplido.

Format Code	Byte transmission order
0	ABCD
1	CDAB
2	DCBA
3	BADC

11.3 Registro Modbus

Holding Register

Los registros Holding se componen de 16 bit. Se pueden leer y escribir Antes de cada instrucción se envía la dirección (1 Byte), después de cada instrucción un CRC (2 Byte).

Register Name	Register Number	Туре	Configurable Values	Default Va- lue	Unit
Address	200	Word	1 255	246	-
Baud Rate	201	Word	1200, 2400, 4800, 9600, 19200, 38400, 57600	9600	-
Parity	202	Word	0 = None, 1 = Odd, 2 = Even	0	-
Stopbits	203	Word	1 = None, 2 = Two	1	-
Delay Time	206	Word	10 250	50	ms
Byte Oder (Floa- ting point format)	3000	Word	0, 1, 2, 3	0	-

Registro de entrada

Los registros de entrada se componen de 16 bit. Solamente se pueden leer. Antes de cada instrucción se envía la dirección (1 Byte), después de cada instrucción se envía un CRC (2 Byte).

Register Name	Register Number	Туре	Note
Status	100	DWord	Bit 0: Invalid Measurement Value PV
			Bit 1: Invalid Measurement Value SV
			Bit 2: Invalid Measurement Value TV
			Bit 3: Invalid Measurement Value QV
PV Unit	104	DWord	Unit Code
PV	106		Primary Variable in Byte Order CDAB
SV Unit	108	DWord	Unit Code
SV	110		Secondary Variable in Byte Order CDAB
TV Unit	112	DWord	Unit Code
TV	114		Third Variable in Byte Order CDAB
QV Unit	116	DWord	Unit Code
QV	118		Quarternary Variable in Byte Order CDAB

PV, SV, TV y QV se pueden ajustar a través del DTM del sensor.

Primary Variable in Byte Order DCBA (Little Endian)

Secondary Variable in Byte Order DCBA (Little Endian)

Third Variable in Byte Order ABCD DCBA (Little Endian)

Quarternary Variable in Byte Order DCBA (Little Endian)

Primary Variable in Byte Order BACD (Middle Endian)

Third Variable in Byte Order BACD (Middle Endian)

Secondary Variable in Byte Order BACD (Middle Endian)

Quarternary Variable in Byte Order BACD (Middle Endian)

Register Name	Register Number	Туре	Note
Status	1300	DWord	See Register 100
PV	1302		Primary Variable in Byte Order of Register 3000
SV	1304		Secondary Variable in Byte Order of Register 3000
TV	1306		Third Variable in Byte Order of Register 3000
QV	1308		Quarternary Variable in Byte Order of Register 3000
Status	1400	DWord	See Register 100
PV	1402		Primary Variable in Byte Order CDAB
Status	1412	DWord	See Register 100
SV	1414		Secondary Variable in Byte Order CDAB
Status	1424	DWord	See Register 100
TV	1426		Third Variable in Byte Order CDAB
Status	1436	DWord	See Register 100
QV	1438		Quarternary Variable in Byte Order CDAB
Status	2000	DWord	See Register 100
PV	2002	DWord	Primary Variable in Byte Order ABCD (Big Endian)
SV	2004	DWord	Secondary Variable in Byte Order ABCD (Big Endian)
TV	2006	DWord	Third Variable in Byte Order ABCD (Big Endian)
QV	2008	DWord	Quarternary Variable in Byte Order ABCD (Big Endian
Status	2100	DWord	See Register 100

DWord

DWord

DWord

DWord

DWord

DWord

DWord

DWord

DWord

Unit Codes for Register 104, 108, 112, 116

2102

2104

2106

2108

2200

2202

2204

2206

2208

Unit Code	Measurement Unit
1	in H2O
2	in Hg

See Register 100

(Big Endian)

PV

SV

TV

QV

Status

ΡV

SV

TV

QV

Unit Code	Measurement Unit
3	ft H2O
4	mm H2O
5	mm Hg
6	psi
7	bar
8	mbar
11	Pa
12	kPa
13	torr
32	°C
33	°F
40	US liq. gal.
41	L
42	Imp. Gal.
43	m3
44	ft
45	m
46	bbl
47	in
48	cm
49	mm
111	cyd
112	cft
113	cuin
237	MPa

11.4 Modbus instrucciones RTU

FC3 Read Holding Register

Con esa instrucción se lee una cantidad arbitraria (1-127) de registros holding. Se transfiere el registro inicial a partir del que se inicia la lectura y la cantidad de registros.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x03
	Byte Count	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC4 Read Input Register

Con esa instrucción se lee una cantidad arbitraria (1-127) de registros de entrada. Se transfiere el registro inicial a partir del que se inicia la lectura y la cantidad de registros.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	N*2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x04
	Byte Count	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC6 Write Single Register

Con este código de función se puede escribir en un registro Holding individual.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x06
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	Data
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	2 Bytes	Data

FC8 Diagnostics

Con ese código de función se pueden iniciar diferentes funciones o leer valores de diagnóstico.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data

Código de funcionamiento convertido:

Sub Function Code	Nombre	
0x00	Return Data Request	
0x0B	Return Message Counter	

Para el código de funcionamiento 0x00 solamente se puede escribir un valor de 16 Bit.

FC16 Write Multiple Register

Con este código de función se escribe en varios registros Holding. en una solicitud, sólo puede escribirse en registros directamente consecutivos.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	0x0001 to 0x007B
	Byte Count	1 Byte	2*N
	Register Value	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	0x01 to 0x7B

FC17 Report Sensor ID

Con este código de función se consulta el ID del sensor en el Modbus.

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x11
Response:	Function Code	1 Byte	0x11
	Byte Number	1 Byte	
	Sensor ID	1 Byte	
	Run Indicator Status	1 Byte	

FC43 Sub 14, Read Device Identification

Con ese código de funcionamiento se consulta la identificación del dispositivo (Device Identification).

	Parámetro	Length	Code/Data
Request:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Object ID	1 Byte	0x00 to 0xFF

	Parámetro	Length	Code/Data
Response:	Function Code	1 Byte	0x2B
	МЕІ Туре	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Confirmity Level	1 Byte	0x01, 0x02, 0x03, 0x81, 0x82, 0x83
	More follows	1 Byte	00/FF
	Next Object ID	1 Byte	Object ID number
	Number of Objects	1 Byte	
	List of Object ID	1 Byte	
	List of Object length	1 Byte	
	List of Object value	1 Byte	Depending on the Object ID

11.5 Instrucciones Levelmaster

VEGADIF 85 también es adecuado para la conexión a los siguientes RTUs con protocolo Levelmaster. El protocolo Levelmaster se denomina a menudo " *Protocolo Siemens-*" o " *Protocolo tanque*".

RTU	Protocol
ABB Totalflow	Levelmaster
Kimray DACC 2000/3000	Levelmaster
Thermo Electron Autopilot	Levelmaster

Parámetros para la comunicación de bus

VEGADIF 85 está preajustado con los valores por defecto:

Parámetro	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1,2	1
Address range Levelmaster	32	32

Las instrucciones Levelmaster se basan en la sintaxis siguiente:

- Las letras en mayúsculas aparecen al principio de determinados campos
- Las letras en minúsculas están para campos de datos
- Todas las instrucciones se cierran con " <*cr>*" (carriage return)
- Todas las instrucciones comienzan con " *Uuu*", donde " *uu*" está para la dirección (00-31)
- " *" se puede usar como comodín para cada punto en la dirección. El sensor siempre convierte esto en una dirección. Para más de un sensor no se puede usar el comodín, ya que en caso contrario responden varios esclavos
- Instrucciones, que modifican el equipo, devuelven la instrucción con " OK" a continuación. " EE-ERROR" pone " OK", si ha habido un problema durante el cambio de configuración

Report Level (and Temperature)

	Parámetro	Length	Code/Data
Request:	Report Level (and Tem- perature)	4 characters ASCII	Uuu?
Response:	Report Level (and Tem- perature)	24 characters ASCII	UuuDIII.IIFtttEeeeeWwww uu = Address III.II = PV in inches ttt = Temperature in Fahrenheit eeee = Error number (0 no error, 1 le- vel data not readable) wwww = Warning number (0 no war- ning)

PV in inches se repite cuando " *Set number of floats*" se pone a 2. Con ello e sposible transmitir 2 valores de medición. El valor PV se transmite como primer vaor de medición, y SV como segundo valor de medición.

Información:

1

El valor máximo transmisible para el PV es de 999.99 inches (equivale a aprox. 25,4 m).

Si se desea transmitir también la temperatura en el protocolo Levelmaster, entonces hay que ajustar a la temperatura el TV en el sensor.

PV, SV y TV pueden ajustarse por medio del sensor DTM.

Report Unit Number

	Parámetro	Length	Code/Data
Request:	Report Unit Number	5 characters ASCII	U**N?
Response:	Report Level (and Temperature)	6 characters ASCII	UuuNnn

Assign Unit Number

	Parámetro	Length	Code/Data
Request:	Assign Unit Number	6 characters ASCII	UuuNnn
Response:	Assign Unit Number	6 characters ASCII	UuuNOK
			uu = new Address

Set number of Floats

	Parámetro	Length	Code/Data
Request:	Set number of Floats	5 characters ASCII	UuuFn
Response:	Set number of Floats	6 characters ASCII	UuuFOK

Si el número se pone en 0, no se señaliza más ningún nivel

Set Baud Rate

	Parámetro	Length	Code/Data
Request:	Set Baud Rate	8 (12) characters ASCII	UuuBbbbb[b][pds]
			Bbbbb[b] = 1200, 9600 (default)
			pds = parity, data length, stop bit (optional)
			parity: none = N, even = E (default), odd = O
Response:	Set Baud Rate	11 characters ASCII	

Ejemplo: U01B9600E71

Cambiar equipo en la dirección 1 a la tasa de baudios 9600, paridad par, 7 bits de datos, 1 bit de parada

Set Receive to Transmit Delay

	Parámetro	Length	Code/Data
Request:	Set Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms
Response:	Set Receive to Transmit Delay	6 characters ASCII	UuuROK

Report Number of Floats

	Parámetro	Length	Code/Data
Request:	Report Number of Floats	4 characters ASCII	UuuF
Response:	Report Number of Floats	5 characters ASCII	UuuFn n = number of measurement values
			(0, 1 or 2)

Report Receive to Transmit Delay

	Parámetro	Length	Code/Data
Request:	Report Receive to Transmit Delay	4 characters ASCII	UuuR
Response:	Report Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms

Código de error

Error Code	Name
EE-Error	Error While Storing Data in EEPROM
FR-Error	Erorr in Frame (too short, too long, wrong data)
LV-Error	Value out of limits

11.6 Configuración de un host Modbus típico

Fisher ROC 809

Fig. 47: Conexión del VEGADIF 85 a RTU Fisher ROC 809

- 1 VEGADIF 85
- 2 RTU Fisher ROC 809
- 3 Alimentación de tensión

Parámetros para el host Modbus

Parámetro	Value Fisher ROC 809	Value ABB Total Flow	Value Fisher Thermo Elec- tron Autopilot	Value Fisher Bristol Con- trolWave Micro	Value Sca- daPack
Baud Rate	9600	9600	9600	9600	9600
Floating Point Format Code	0	0	0	2 (FC4)	0
RTU Data Type	Conversion Co- de 66	16 Bit Modicon	IEE Fit 2R	32-bit registers as 2 16-bit re- gisters	Floating Point
Input Register Base Number	0	1	0	1	30001

El número de base del registro de entrada siempre se suma a la dirección del registro de entrada VEGADIF 85.

De allí resultan las siguientes constelaciones:

- Fisher ROC 809 Dirección de registro para 1300 es la dirección 1300
- ABB Total Flow Dirección de registro para 1302 es la dirección 1303
- Thermo Electron Autopilot Dirección de registro para 1300 es la dirección 1300
- Bristol ControlWave Micro Dirección de registro para 1302 es la dirección 1303
- ScadaPack Dirección de registro para 1302 es la dirección 31303

11.7 Cálculo de la desviación total

La desviación total de un transmisor de presión indica el erro de medición máximo a esperar en la práctica. La misma se denomina también desviación práctica máxima o error de empleo.

Según DIN 16086, la desviación total F_{total} es la suma de la desviación básica F_{perf} y la estabilidad a largo plazo F_{stab} :

$$\mathsf{F}_{\mathsf{total}} = \mathsf{F}_{\mathsf{perf}} + \mathsf{F}_{\mathsf{stab}}$$

A su vez, la desviación básica F_{perf} está compuesta por la variación térmica de la señal cero y el margen de salida F_{τ} (error de temperatura), así como por la desviación de medición F_{κ} :

$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$

El cambio térmico de señal de cero y margen de salida F₁ se indica en el capítulo " Datos técnicos". Esto vale primero para la salida de señal digital mediante HART, Profibus PA, Foundation Fieldbus o Modbus.

En caso de una salida de 4 ... 20 mA también se añade la variación térmica de la salida de corriente F_:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

Aguí los signos de fórmula han sido resumidos para una mejor descripción:

- F_{total}: Desviación total
- F_{perf}: Desviación básica F_{stab}: estabilidad a largo plazo
- F₁: Variación térmica de la señal cero margen de salida (Error de temperatura)
- F_{k1}: Error de medición
- Fai: Variación térmica de la salida de corriente
- EMZ: Factor adicional versión de la sonda de medición
- FTD: Factor adicional Turn Down

11.8 Cálculo de la desviación total - Ejemplo práctico

Datos

Presión diferencial 250 mbar (25 KPa), temperatura del medio en la celda de medida 60 °C

VEGADIF 85 con rango de medición 500 mbar

Los valores requeridos para error de temperatura F₂₇ desviación de medición F₁₆₁ y estabilidad a largo plazo F_{stab} se toman de los datos técnicos.

1. Cálculo del Turn Down

TD = 500 mbar/250 mbar

TD = 2:1

2. Determinación del error de temperatura F_T

Rango de medición	-10 +60 °C / +14 +140 °F	-4010 °C / -40 +14 °F und +60 +85 °C /+140 +185 °F
10 mbar (1 kPa)/0.145 psi	< ±0,15 % + 0,20 % x TD	< ±0,4 % + 0,3 % x TD
30 mbar (3 kPa)/0.44 psi	< ±0,15 % + 0,10 % x TD	< ±0,2 % + 0,15 % x TD
100 mbar (10 kPa)/1.5 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,2 % x TD
500 mbar (50 kPa)/7.3 psi		< ±0,2 % + 0,06 % x TD
3 bar (300 kPa)/43.51 psi	$<\pm0,15\%\pm0,05\%$ XTD	
16 bar (1600 kPa)/232.1 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD

$F_{\tau} = 0,15 \% + 0,05 \% \times TD$ $F_{T} = 0,15 \% + 0,1 \%$ $F_{\tau} = \frac{0,25\%}{0,25\%}$

3. Determinación de la desviación de medición y de la estabilidad a largo plazo

Error de medición

Rango de medición	TD 1 : 1 hasta 5 : 1	TD > 5 : 1	TD > 10 : 1	
10 mbar (1 kPa)/0.145 psi	< ±0,1 %			
30 mbar (3 kPa)/0.44 psi		< ±0,02 % X TD		
100 mbar (10 kPa)/1.5 psi			< ±(0,035 % + 0,01 %) x TD	
500 mbar (50 kPa)/7.3 psi				
3 bar (300 kPa)/43.51 psi	< ±0,	005 %	< ±(0,015 % + 0,005 %) x TD	
16 bar (1600 kPa)/232.1 psi			< ±(0,035 % + 0,01 %) x TD	

Estabilidad a largo plazo

Magnitud da madiaián	Rango de tiempo		
Magnitud de medición	1 año	5 años	10 años
Presión diferencial 22)	<mark>< 0,065 % x TD</mark>	< 0,1 % x TD	< 0,15 % x TD
Presión estática 23)	< ±0,065 %	< ±0,1 %	< ±0,15 %

4. Cálculo de la desviación total - Señal digital de salida

- Paso 1: precisión básica F_{nerf}

$$\begin{split} &\mathsf{F}_{\text{perf}} = \sqrt{((\mathsf{F}_{\text{T}})^2 + (\mathsf{F}_{\text{Kl}})^2)} \\ &\mathsf{F}_{\text{T}} = 0,25~\% \\ &\mathsf{F}_{\text{Kl}} = 0,065~\% \\ &\mathsf{F}_{\text{perf}} = \sqrt{(0,25~\%)^2 + (0,065~\%)^2)} \\ &\mathsf{F}_{\text{perf}} = 0,26~\% \\ &\textbf{- Paso 2: Desviación total F}_{\text{total}} \\ &\mathsf{F}_{\text{total}} = \mathsf{F}_{\text{perf}} + \mathsf{F}_{\text{stab}} \\ &\mathsf{F}_{\text{perf}} = 0,26~\% \text{ (resultado del paso } \\ &\mathsf{F}_{\text{stab}} = 0,065~\% \text{ x TD} \\ &\mathsf{F}_{\text{stab}} = 0,065~\% \text{ x 2} \end{split}$$

 $F_{total} = 0,26 \% + 0,13 \% = \frac{0,39 \%}{0,39 \%}$

La desviación total porcentual de la medición es con ello de 0,39 %. La desviación total absoluta es de 0,39 % de 250 mbar = 1 mbar

El ejemplo muestra que el error de empleo puede ser considerablemente mayor en la práctica que la desviación de medición propiamente dicha. Las causas son la influencia de la temperatura y el Turn down.

53571-ES-230822

11.9 Dimensiones, versiones, módulos de proceso

1)

Los dibujos acotados siguientes representan solo una parte de las versiones posibles. Dibujos acotados detallados se pueden descargar de <u>www.vega.com</u> en " *Downloads*" y " *Dibujos*".

- ²²⁾ Referido al margen de medición ajustado.
- ²³⁾ Referido al valor final de rango de medición.

Carcasa

Fig. 48: Medidas de la carcasa - con módulo de visualización y configuración integrado, la altura de la carcasa aumenta en 9 mm/0.35 in o 18 mm/0.71 in

1 Dos cámaras de plástico

2 Doble cámara de aluminio / acero inoxidable

Purga de aire en el eje de proceso

Fig. 49: VEGADIF 85, purga de aire en el eje de proceso

Conexión	Fijación	Material	Material suministrado
1/4-18 NPT, IEC 61518	7/16-20 UNF	316L	incl. 2 válvulas de purga
1/4-18 NPT, IEC 61518	7/16-20 UNF	Alloy C276 (2.4819)	de aire
1/4-18 NPT, IEC 61518	7/16-20 UNF	Super dúplex (2.4410)	sin

Purga de aire lateral

Fig. 50: VEGADIF 85, purga de aire lateral

Conexión	Fijación	Material	Material suministrado				
1/4-18 NPT, IEC 61518	7/16-20 UNF	316L	incl. 4 tapones roscados y				
1/4-18 NPT, IEC 61518	7/16-20 UNF	Alloy C276 (2.4819)	2 válvulas de purga de aire				

Brida oval, preparada para montaje de separador

Fig. 51: izquierda: Conexión a proceso VEGADIF 85 preparada para el montaje del separador. Derecha: Posición de la junta circular de cobre

- 1 Montaje del separador
- 2 Junta circular de cobre
- 3 Membrana de separación

11.10 Derechos de protección industrial

VEGA product lines are global protected by industrial property rights. Further information see <u>www.vega.com</u>.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web <u>www.vega.com</u>.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。

11.11 Marca registrada

Todas las marcas y nombres comerciales o empresariales empleados pertenecen al propietario/ autor legal.

												<u>y</u>
												357
												<u>ה</u>
												C V
												302
												322

Fecha de impresión:

Las informaciones acera del alcance de suministros, aplicación, uso y condiciones de funcionamiento de los sensores y los sistemas de análisis corresponden con los conocimientos existentes al momento de la impresión. Reservado el derecho de modificación

© VEGA Grieshaber KG, Schiltach/Germany 2023

CE

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Alemania

Teléfono +49 7836 50-0 E-Mail: info.de@vega.com www.vega.com