Betriebsanleitung

Differenzdruckmessumformer mit metallischer Messmembran

Modbus- und Levelmaster-Protokoll

Document ID: 53571

Inhaltsverzeichnis

1	Zu di	Zu diesem Dokument		
	1.1	Funktion	. 4	
	1.2	Zielgruppe	. 4	
	1.3	Verwendete Symbolik	4	
2	Zu Ih	rer Sicherheit	. 5	
	2.1	Autorisiertes Personal	5	
	2.2	Bestimmungsgemäße Verwendung	. 5	
	2.3	Warnung vor Fehlgebrauch	5	
	2.4	Allgemeine Sicherheitshinweise	. 5	
	2.5	Konformität	. 6	
	2.6	NAMUR-Empfehlungen	6	
	2.7	Umwelthinweise	6	
3	Prod	uktbeschreibung	. 7	
	3.1	Aufbau	. 7	
	3.2	Arbeitsweise	. 8	
	3.3	Zusätzliche Reinigungsverfahren	11	
	3.4	Verpackung, Transport und Lagerung	11	
	3.5	Zubehör	12	
4	Mont	ieren	13	
	4.1	Allgemeine Hinweise	13	
	4.2	Hinweise zu Sauerstoffanwendungen	15	
	4.3	Anbindung an den Prozess	15	
	4.4	Montage- und Anschlusshinweise	16	
	4.5	Messanordnungen	18	
5	An di	ie Spannungsversorgung und das Bussystem anschließen	28	
	5.1	Anschluss vorbereiten	28	
	5.2	Anschließen	29	
	5.3	Anschlussplan	31	
	5.4	Externes Gehäuse bei Ausführung IP68 (25 bar)	32	
	5.5	Einschaltphase	34	
6	Sens	or mit dem Anzeige- und Bedienmodul in Betrieb nehmen	35	
	6.1	Anzeige- und Bedienmodul einsetzen	35	
	6.2	Bediensystem	36	
	6.3	Messwertanzeige	37	
	6.4	Parametrierung - Schnellinbetriebnahme	38	
	6.5	Parametrierung - Erweiterte Bedienung	38	
7	Sens	or und Modbus-Schnittstelle mit PACTware in Betrieb nehmen	55	
	7.1	Den PC anschließen	55	
	7.2	Parametrieren	56	
	7.3	Geräteadresse einstellen	57	
	7.4	Parametrierdaten sichern	58	
8	Mess	seinrichtung in Betrieb nehmen	59	
	8.1	Füllstandmessung	59	
	8.2	Durchflussmessung	61	
9	Diag	nose. Asset Management und Service	63	
5	9.1	Instandhalten	63	
	5.1		50	

	9.2	Diagnosespeicher	63
	9.3	Asset-Management-Funktion	64
	9.4	Störungen beseitigen	67
	9.5	Prozessflansche tauschen	67
	9.6	Prozessbaugruppe bei Ausführung IP68 (25 bar) tauschen	68
	9.7	Elektronikeinsatz tauschen	70
	9.8	Softwareupdate	70
	9.9	Vorgehen im Reparaturfall	70
10	Ausb	auen	71
	10.1	Ausbauschritte	71
	10.2	Entsorgen	71
44	Anho	na	72
	Allia	Taskaisska Datez	70
	11.1	Iechnische Daten	. 72
		Constant and the second s	01
	11.2	Gerätekommunikation Modbus	81
	11.2	Gerätekommunikation Modbus Modbus-Register	81 82
	11.2 11.3 11.4	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle	81 82 84
	11.2 11.3 11.4 11.5	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle	81 82 84 87
	11.2 11.3 11.4 11.5 11.6	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle Konfiguration eines typischen Modbus-Hosts	81 82 84 87 90
	11.2 11.3 11.4 11.5 11.6 11.7	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle Konfiguration eines typischen Modbus-Hosts Berechnung der Gesamtabweichung	81 82 84 87 90 90
	11.2 11.3 11.4 11.5 11.6 11.7 11.8	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle Konfiguration eines typischen Modbus-Hosts Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung - Praxisbeispiel	81 82 84 87 90 90 91
	11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle Konfiguration eines typischen Modbus-Hosts Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung - Praxisbeispiel Maße, Ausführungen Prozessbaugruppe	81 82 84 87 90 90 91 92
	11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10	Gerätekommunikation Modbus Modbus-Register Modbus RTU-Befehle Levelmaster-Befehle Konfiguration eines typischen Modbus-Hosts Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung Berechnung der Gesamtabweichung Gewerbliche Schutzrechte	81 82 84 90 90 91 92 95

Sicherheitshinweise für Ex-Bereiche:

Beachten Sie bei Ex-Anwendungen die Ex-spezifischen Sicherheitshinweise. Diese liegen jedem Gerät mit Ex-Zulassung als Dokument bei und sind Bestandteil der Betriebsanleitung.

Redaktionsstand: 2023-08-04

1 Zu diesem Dokument

11 **Funktion**

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, Sicherheit und den Austausch von Teilen. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Do-

cument ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der VEGADIF 85 ist ein Gerät zur Messung von Durchfluss, Füllstand, Differenzdruck, Dichte und Trennschicht.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Das betreibende Unternehmen ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich das betreibende Unternehmen durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften sind zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch von uns autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt. Aus Sicherheitsgründen darf nur das von uns benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

2.5 Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden landesspezifischen Richtlinien bzw. technischen Regelwerke. Mit der entsprechenden Kennzeichnung bestätigen wir die Konformität.

Die zugehörigen Konformitätserklärungen finden Sie auf unserer Homepage.

2.6 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 53 Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten
- NE 107 Selbstüberwachung und Diagnose von Feldgeräten

Weitere Informationen siehe www.namur.de.

2.7 Umwelthinweise

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN EN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in dieser Betriebsanleitung:

- Kapitel "Verpackung, Transport und Lagerung"
- Kapitel "Entsorgen"

Produktbeschreibung 3

31 Aufbau

Lieferumfang

- Der Lieferumfang besteht aus:
- Druckmessumformer VEGADIF 85
- Entlüftungsventile, Verschlussschrauben je nach Ausführung (siehe Kapitel "Maße")

Der weitere Lieferumfang besteht aus:

- Dokumentation
 - Kurz-Betriebsanleitung VEGADIF 85
 - Prüfzertifikat für Druckmessumformer
 - Anleitungen zu optionalen Geräteausstattungen
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen

Information:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Geltungsbereich dieser Betriebsanleitung

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführunaen:

- Hardware ab 1.0.0
- Software ab 1.3.4

Hinweis:

Sie finden die Hard- und Softwareversion des Gerätes wie folgt:

- Auf dem Typschild des Elektronikeinsatzes
- Im Bedienmenü unter "Info"

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

- Gerätetyp
- Informationen über Zulassungen
- Informationen zur Konfiguration
- Technische Daten
- Seriennummer des Gerätes
- Zahlen-Code f
 ür Bluetooth-Zugang (optional)
- Herstellerinformationen

Dokumente und Software Um Auftragsdaten, Dokumente oder Software zu Ihrem Gerät zu finden, gibt es mehrere Möglichkeiten:

- Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.
- Scannen Sie den QR-Code auf dem Typschild.
- Öffnen Sie die VEGA Tools-App und geben Sie unter Dokumentation die Seriennummer ein.

	3.2 Arbeitsweise		
Anwendungsbereich	Der VEGADIF 85 ist universell für Anwendungen in nahezu allen In- dustriebereichen geeignet. Er wird zur Messung folgender Druckarten verwendet:		
	DifferenzdruckStatischer Druck		
Messmedien	Messmedien sind Gase, Dämpfe und Flüssigkeiten.		
Messgrößen	Die Differenzdruckmessung ermöglicht die Messung von: • Füllstand • Durchfluss • Differenzdruck • Dichte • Trennschicht		
Füllstandmessung	Das Gerät ist zur Füllstandmessung in geschlossenen, drucküberla- gerten Behältern geeignet. Der statische Druck wird dabei über die Differenzdruckmessung kompensiert. Er steht bei digitalen Signalaus- gängen als separater Messwert zur Verfügung.		

Abb. 1: Füllstandmessung mit VEGADIF 85 in einem drucküberlagerten Behälter

Durchflussmessung Die Durchflussmessung erfolgt über einen Wirkdruckgeber, wie Messblende oder Staudrucksonde. Das Gerät erfasst die entstehende Druckdifferenz und rechnet den Messwert in den Durchfluss um. Der statische Druck steht bei digitalen Signalausgängen als separater Messwert zur Verfügung.

Abb. 2: Durchflussmessung mit VEGADIF 85 und Messblende, Q = Durchfluss, Differenzdruck $\Delta p = p_1 - p_2$

Differenzdruckmessung

Die Drücke in zwei Rohrleitungen werden über Wirkdruckleitungen aufgenommen. Das Gerät ermittelt den Differenzdruck.

Abb. 3: Messung des Differenzdruckes in Rohrleitungen mit VEGADIF 85, Differenzdruck $\Delta p = p_1 - p_2$

Dichtemessung

In einem Behälter mit veränderlichem Füllstand und homogener Dichteverteilung lässt sich eine Dichtemessung mit dem Gerät realisieren. Der Anschluss an den Behälter erfolgt über Druckmittler an zwei Messpunkten.

Abb. 4: Dichtemessung mit VEGADIF 85

Trennschichtmessung

In einem Behälter mit veränderlichem Füllstand lässt sich eine Trennschichtmessung mit dem Gerät realisieren. Der Anschluss an den Behälter erfolgt über Druckmittler an zwei Messpunkten.

Abb. 5: Trennschichtmessung mit VEGADIF 85

FunktionsprinzipAls Sensorelement kommt eine metallische Messzelle zum Einsatz.
Die Prozessdrücke werden über die Trennmembranen und Füllöle
auf ein piezoresistives Sensorelement (Widerstandsmessbrücke in
Halbleitertechnologie) übertragen.

Die Differenz der anliegenden Drücke ändert die Brückenspannung. Diese wird gemessen, weiterverarbeitet und in ein entsprechendes Ausgangssignal umgewandelt.

Bei Überschreitung der Messgrenzen schützt ein Überlastsystem das Sensorelement vor Beschädigung.

Zusätzlich werden die Messzellentemperatur und der statische Druck auf der Niederdruckseite gemessen. Die Messsignale werden weiterverarbeitet und stehen als zusätzliche Ausgangssignale zur Verfügung.

Abb. 6: Aufbau Metallmesszelle

- 1 Füllflüssigkeit
- 2 Temperatursensor
- 3 Absolutdrucksensor statischer Druck
- 4 Überlastsystem
- 5 Differenzdrucksensor
- 6 Trennmembran

3.3 Zusätzliche Reinigungsverfahren

Der VEGADIF 85 steht auch in der Ausführung "Öl-, fett- und silikonölfrei" zur Verfügung. Diese Geräte haben ein spezielles Reinigungsverfahren zum Entfernen von Ölen, Fetten und weitere lackbenetzungsstörenden Substanzen (LABS) durchlaufen.

Die Reinigung erfolgt an allen prozessberührenden Teilen sowie an den von außen zugänglichen Oberflächen. Zur Erhaltung des Reinheitsgrades erfolgt nach dem Reinigungsprozess eine sofortige Verpackung in Kunststofffolie. Der Reinheitsgrad besteht, solange sich das Gerät in der verschlossenen Originalverpackung befindet.

Der VEGADIF 85 in dieser Ausführung darf nicht in Sauerstoffanwendungen eingesetzt werden. Hierfür stehen Geräte in spezieller Ausführung "*Öl-, fett- und silikonfrei für Sauerstoffanwendung*" zur Verfügung.

3.4 Verpackung, Transport und Lagerung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Die Geräteverpackung besteht aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Vorsicht:

Geräte für Sauerstoffanwendungen sind in PE-Folie eingeschweißt und mit einem Aufkleber "Oxygene! Use no Oil" versehen. Diese Folie darf erst unmittelbar vor der Montage des Gerätes entfernt werden! Siehe Hinweis unter "*Montieren*".

Transport Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

TransportinspektionDie Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und even-
tuelle Transportschäden zu untersuchen. Festgestellte Transportschä-
den oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Verpackung

53571-DE-230804

Lager- und Transporttem- peratur	 Lager- und Transporttemperatur siehe Kapitel "Anhang - Techni- sche Daten - Umgebungsbedingungen" Relative Luftfeuchte 20 85 %
Heben und Tragen	Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.
	3.5. Zubehör
	Die Anleitungen zu den aufgeführten Zubehörteilen finden Sie im Downloadbereich auf unserer Homepage.
Anzeige- und Bedienmo- dul	Das Anzeige- und Bedienmodul dient zur Messwertanzeige, Bedie- nung und Diagnose.
	Das integrierte Bluetooth-Modul (optional) ermöglicht die drahtlose Bedienung über Standard-Bediengeräte.
VEGACONNECT	Der Schnittstellenadapter VEGACONNECT ermöglicht die Anbindung kommunikationsfähiger Geräte an die USB-Schnittstelle eines PCs.
VEGADIS-Adapter	Der VEGADIS-Adapter ist ein Zubehörteil für Sensoren mit Zweikam- mergehäuse. Er ermöglicht den Anschluss des VEGADIS 81 über einen M12 x 1-Stecker am Sensorgehäuse.
Schutzhaube	Die Schutzhaube schützt das Sensorgehäuse vor Verschmutzung und starker Erwärmung durch Sonneneinstrahlung.
Montagezubehör	Das passende Montagezubehör zum VEGADIF 85 umfasst Ovalflan- schadapter, Ventilblöcke sowie Montagewinkel.
Druckmittler	Durch den Anbau von Druckmittlern kann der VEGADIF 85 auch bei korrosiven, hochviskosen oder heißen Medien eingesetzt werden.

4 Montieren

4.1 Allgemeine Hinweise

Prozessbedingungen

Hinweis:

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

Zulässiger ProzessdruckDer zulässige Prozessdruckbereich wird mit "MWP" (Maximum Wor-
king Pressure) auf dem Typschild angegeben, siehe Kapitel "Aufbau".
Die Angabe bezieht sich auf eine Referenztemperatur von +25 °C
(+76 °F). Der MWP darf auch einseitig dauernd anliegen.
Damit kein Schaden am Gerät entsteht, darf ein beidseitig wirkender

Prüfdruck den angegebenen MWP nur kurzzeitig um das 1,5-fache bei Referenztemperatur überschreiten. Dabei sind die Druckstufe des Prozessanschlusses sowie die Überlastbarkeit der Messzelle berücksichtigt (siehe Kapitel "*Technische Daten*").

Darüber hinaus kann ein Temperaturderating der Prozessanbindung, z. B. bei Flanschdruckmittlern, den zulässigen Prozessdruckbereich entsprechend der jeweiligen Norm einschränken.

Schutz vor Feuchtigkeit Schützen Sie Ihr Gerät durch folgende Maßnahmen gegen das Eindringen von Feuchtigkeit:

- Passendes Anschlusskabel verwenden (siehe Kapitel "An die Spannungsversorgung anschließen")
- Kabelverschraubung bzw. Steckverbinder fest anziehen
- Anschlusskabel vor Kabelverschraubung bzw. Steckverbinder nach unten führen

Dies gilt vor allem bei Montage im Freien, in Räumen, in denen mit Feuchtigkeit zu rechnen ist (z. B. durch Reinigungsprozesse) und an gekühlten bzw. beheizten Behältern.

Hinweis:

Stellen Sie sicher, dass während der Installation oder Wartung keine Feuchtigkeit oder Verschmutzung in das Innere des Gerätes gelangen kann.

Stellen Sie zur Erhaltung der Geräteschutzart sicher, dass der Gehäusedeckel im Betrieb geschlossen und ggfs. gesichert ist.

Belüftung

Die Belüftung für das Elektronikgehäuse wird über ein Filterelement im Bereich der Kabelverschraubungen realisiert.

Abb. 7: Position des Filterelementes - Nicht-Ex-, Ex-ia- und Ex-d-ia-Ausführung

- 1 Kunststoff-, Edelstahl-Einkammer (Feinguss)
- 2 Aluminium-Einkammer
- 3 Edelstahl-Einkammer (elektropoliert)
- 4 Kunststoff-Zweikammer
- 5 Aluminium-, Edelstahl-Zweikammer (Feinguss)
- 6 Filterelement

Information:

Im Betrieb ist darauf zu achten, dass das Filterelement immer frei von Ablagerungen ist. Zur Reinigung darf kein Hochdruckreiniger verwendet werden.

Drehen des Gehäuses Das Elektronikgehäuse kann zur besseren Lesbarkeit der Anzeige oder zum Zugriff auf die Verdrahtung um 330° gedreht werden. Ein Anschlag verhindert, dass das Gehäuse zu weit gedreht wird.

Je nach Ausführung und Gehäusewerkstoff muss noch die Feststellschraube am Hals des Gehäuses etwas gelöst werden. Das Gehäuse kann nun in die gewünschte Position gedreht werden. Sobald die gewünschte Position erreicht ist, ziehen Sie die Feststellschraube fest.

Temperaturgrenzen Höhere Prozesstemperaturen bedeuten oft auch höhere Umgebungstemperaturen. Stellen Sie sicher, dass die in Kapitel "Technische

Daten" angegebenen Temperaturobergrenzen für die Umgebung von Elektronikgehäuse und Anschlusskabel nicht überschritten werden.

4.2 Hinweise zu Sauerstoffanwendungen

Warnung:

Sauerstoff kann als Oxidationsmittel Brände verursachen oder verstärken. Öle, Fette, manche Kunststoffe sowie Schmutz können bei Kontakt mit Sauerstoff explosionsartig verbrennen. Es besteht die Gefahr schwerer Personen- oder Sachschäden.

Treffen Sie deshalb, um das zu vermeiden, unter anderem folgende Vorkehrungen:

- Alle Komponenten der Anlage Messgeräte müssen gemäß den Anforderungen anerkannter Standards bzw. Normen gereinigt sein
- Je nach Dichtungswerkstoff dürfen bei Sauerstoffanwendungen bestimmte maximale Temperaturen und Drücke nicht überschritten werden, siehe Kapitel "Technische Daten"
- Geräte für Sauerstoffanwendungen dürfen erst unmittelbar vor der Montage aus der PE-Folie ausgepackt werden
- Überprüfen, ob nach Entfernen des Schutzes für den Prozessanschluss die Kennzeichnung "O2" auf dem Prozessanschluss sichtbar ist
- Jeden Eintrag von Öl, Fett und Schmutz vermeiden

4.3 Anbindung an den Prozess

Wirkdruckgeber Wirkdruckgeber sind Einbauten in Rohrleitungen, die einen strömungsabhängigen Druckabfall erzeugen. Über diesen Differenzdruck wird der Durchfluss gemessen. Typische Wirkdruckgeber sind Venturirohre, Messblenden oder Staudrucksonden.

> Hinweise zur Montage von Wirkdruckgebern können Sie den entsprechenden Normen sowie den Unterlagen des jeweiligen Herstellers entnehmen.

Wirkdruckleitungen Wirkdruckleitungen sind Rohrleitungen mit kleinem Durchmesser. Sie dienen zum Anschluss des Differenzdruckmessumformers an die Druckentnahmestelle bzw. den Wirkdruckgeber.

Grundsätze

Wirkdruckleitungen für Gase müssen immer vollständig trocken bleiben, es darf sich kein Kondensat sammeln. Wirkdruckleitungen für Flüssigkeiten müssen immer vollständig gefüllt sein und dürfen keine Gasblasen enthalten. Bei Flüssigkeiten sind deshalb geeignete Entlüftungen, bei Gasen geeignete Entwässerungen vorzusehen.

Verlegung

Wirkdruckleitungen müssen immer mit einem ausreichenden, streng monotonen Gefälle/Steigung von mindestens 2 %, besser aber bis zu 10 % verlaufen.

Empfehlungen für die Verlegung von Wirkdruckleitungen können Sie den entsprechenden nationalen oder internationalen Standards entnehmen.

	4.4 Mentene and Anachlaschimusics
i	Hinweis: Verwenden Sie die mitgelieferten Teile und dichten Sie das Gewinde über vier Lagen PTFE-Band ab.
Entlüftungsventile, Ver- schlussschrauben	Freie Öffnungen an der Prozessbaugruppe müssen über Entlüftungs- ventile bzw. Verschlussschrauben geschlossen werden. Erforderli- ches Anzugsmoment siehe Kapitel " <i>Technische Daten</i> ".
	Es stehen 3- und 5-fach-Ventilblöcke zur Verfügung (siehe Kapitel " <i>Montage- und Anschlusshinweise</i> ").
Ventilblöcke	Ventilblöcke dienen zur Erstabsperrung beim Anschluss des Diffe- renzdruckmessumformers an den Prozess. Weiterhin dienen sie zum Druckausgleich der Messkammern beim Abgleich.
i	Hinweis: Beachten Sie die Montagehinweise des jeweiligen Herstellers und dichten Sie das Gewinde ab, z. B. mit PTFE-Band.
	Anschluss Wirkdruckleitungen werden über marktübliche Schneidringverschrau- bungen mit passendem Gewinde an das Gerät angeschlossen.

Anschluss Hoch-/Niederdruckseite

Beim Anschluss des VEGADIF 85 an die Messstelle ist die Hoch-/ Niederdruckseite der Prozessbaugruppe zu beachten.¹⁾.

Die Hochdruckseite erkennen Sie an einem "H", die Niederdruckseite an einem "L" auf der Prozessbaugruppe neben den Ovalflanschen.

Hinweis:

Der statische Druck wird auf der Niederdruckseite "L" gemessen.

Abb. 8: Kennzeichnung für Hoch-/Niederdruckseite an der Prozessbaugruppe

- 1 H = Hochdruckseite
- 2 L = Niederdruckseite

¹⁾ Der an "H" wirksame Druck geht positiv, der an "L" wirksame Druck negativ in die Berechnung der Druckdifferenz ein.

3-fach-Ventilblock

Abb. 9: Anschluss eines 3-fach-Ventilblockes

- 1 Prozessanschluss
- 2 Prozessanschluss
- 3 Einlassventil
- 4 Einlassventil
- 5 Ausgleichsventil

3-fach-Ventilblock, beidseitig anflanschbar

Abb. 10: Anschluss eines 3-fach-Ventilblockes beidseitig anflanschbar

- 1 Prozessanschluss
- 2 Prozessanschluss
- 3 Einlassventil
- 4 Einlassventil
- 5 Ausgleichsventil

Hinweis:
Bei beidse

Bei beidseitig anflanschbaren Ventilblöcken ist kein Montagewinkel erforderlich. Die Prozesseite des Ventilblockes wird direkt an einem Wirkdruckgeber, z. B. einer Messblende, montiert.

5-fach-Ventilblock

Abb. 11: Anschluss eines 5-fach-Ventilblockes

- 1 Prozessanschluss
- 2 Prozessanschluss
- 3 Einlassventil
- 4 Ausgleichsventil
- 5 Einlassventil
- 6 Ventil für Prüfen/Entlüften
- 7 Ventil für Prüfen/Entlüften

4.5 Messanordnungen

4.5.1 Übersicht

Die folgenden Abschnitte zeigen übliche Messanordnungen:

- Füllstand
- Durchfluss
- Differenzdruck
- Trennschicht
- Dichte

Je nach Anwendungsfall können sich auch davon abweichende Anordungen ergeben.

Hinweis:

Die Wirkdruckleitungen werden zur Vereinfachung teilweise mit waagerechtem Verlauf und scharfen Winkeln dargestellt. Beachten Sie zur Verlegung die Hinweise in Kapitel "*Montieren, Anbindung an den* 53571-DE-230804

Im geschlossenen

tungen

Behälter mit Wirkdrucklei-

Prozess " sowie die Hook Ups in der Zusatzanleitung "*Montagezube-hör Druckmesstechnik*".

4.5.2 Füllstand

- Gerät unterhalb des unteren Messanschlusses montieren, damit die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind
- Niederdruckseite immer oberhalb des maximalen Füllstandes anschließen
- Bei Messungen in Medien mit Feststoffanteilen, wie z. B. schmutzigen Flüssigkeiten, ist die Montage von Abscheidern und Ablassventilen sinnvoll. Ablagerungen können so abgefangen und entfernt werden.

Abb. 12: Messanordnung bei Füllstandmessung im geschlossenen Behälter

- 1 Absperrventile
- 2 3-fach-Ventilblock
- 3 Abscheider
- 4 Ablassventile
- 5 VEGADIF 85

Im geschlossenen Behälter mit einseitigem Druckmittler

- Gerät direkt am Behälter montieren
- Niederdruckseite immer oberhalb des maximalen Füllstandes anschließen
- Bei Messungen in Medien mit Feststoffanteilen, wie z. B. schmutzigen Flüssigkeiten, ist die Montage von Abscheidern und Ablassventilen sinnvoll. Ablagerungen können so abgefangen und entfernt werden.

Abb. 13: Messanordnung bei Füllstandmessung im geschlossenen Behälter

- 1 Absperrventil
- 2 Abscheider
- 3 Ablassventil
- 4 VEGADIF 85

• Gerät unterhalb des unteren Druckmittlers montieren

• Für beide Kapillaren sollte die Umgebungstemperatur gleich sein

Im geschlossenen Behälter mit beidseitigem Druckmittler

Information:

Die Füllstandmessung erfolgt nur zwischen der Oberkante des unteren und der Unterkante des oberen Druckmittlers.

Abb. 14: Messanordnung bei Füllstandmessung im geschlossenen Behälter

1 VEGADIF 85

- Gerät unterhalb des unteren Messanschlusses montieren, damit die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind
- Niederdruckseite immer oberhalb des maximalen Füllstandes anschließen
- Das Kondensatgefäß gewährleistet einen konstant bleibenden Druck auf der Niederdruckseite
- Bei Messungen in Medien mit Feststoffanteilen, wie z. B. schmutzigen Flüssigkeiten, ist die Montage von Abscheidern und Ablassventilen sinnvoll. Ablagerungen können so abgefangen und entfernt werden.

53571-DE-230804

Im geschlossenen Behälter mit Dampfüberlagerung mit Wirkdruckleitung

Abb. 15: Messanordnung bei Füllstandmessung im geschlossenen Behälter mit Dampfüberlagerung

- 1 Kondensatgefäß
- 2 Absperrventile
- 3 3-fach-Ventilblock
- 4 Abscheider
- 5 Ablassventile
- 6 VEGADIF 85

4.5.3 Durchfluss

In Gasen

Abb. 16: Messanordnung bei Durchflussmessung in Gasen, Anschluss über 3-fach-Ventilblock, beidseitig anflanschbar

- 1 Blende oder Staudrucksonde
- 2 3-fach-Ventilblock, beidseitig anflanschbar
- 3 VEGADIF 85

In Dämpfen

- Gerät unterhalb der Messstelle montieren
- Kondensatgefäße auf gleicher Höhe der Entnahmestutzen und mit der gleichen Distanz zum Gerät montieren
- Vor der Inbetriebnahme Wirkdruckleitungen auf Höhe der Kondensatgefäße befüllen

Abb. 17: Messanordnung bei Durchflussmessung in Dämpfen

- 1 Kondensatgefäße
- 2 Blende oder Staudrucksonde
- 3 Absperrventile
- 4 3-fach-Ventilblock
- 5 Ablass- bzw. Ausblasventile
- 6 VEGADIF 85

In Flüssigkeiten

- Gerät unterhalb der Messstelle montieren, damit die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind und Gasblasen zurück zur Prozessleitung steigen können
- Bei Messungen in Medien mit Feststoffanteilen, wie z. B. schmutzigen Flüssigkeiten, ist die Montage von Abscheidern und Ablassventilen sinnvoll, um Ablagerungen abfangen und entfernen zu können
- Vor der Inbetriebnahme Wirkdruckleitungen auf Höhe der Kondensatgefäße befüllen

Abb. 18: Messanordnung bei Durchflussmessung in Flüssigkeiten

- 1 Blende oder Staudrucksonde
- 2 Absperrventile
- 3 3-fach-Ventilblock
- 4 Abscheider
- 5 Ablassventile
- 6 VEGADIF 85

4.5.4 Differenzdruck

In Gasen und Dämpfen

 Gerät oberhalb der Messstelle montieren, damit das Kondensat in die Prozessleitung abfließen kann.

Abb. 19: Messanordnung bei Differenzdruckmessung zwischen zwei Rohrleitungen in Gasen und Dämpfen

- 1 Rohrleitungen
- 2 Absperrventile
- 3 3-fach-Ventilblock
- 4 VEGADIF 85

In Dampf- und Kondensatanlagen

 Gerät unterhalb der Messstelle montieren, damit sich in den Wirkdruckleitungen Kondensatvorlagen bilden können.

53571-DE-230804

Abb. 20: Messanordnung bei Differenzdruckmessung zwischen einer Dampfund einer Kondensatleitung

- 1 Dampfleitung
- 2 Kondensatleitung
- 3 Absperrventile
- 4 Kondensatgefäße
- 5 5-fach-Ventilblock
- 6 VEGADIF 85

In Flüssigkeiten

- Gerät unterhalb der Messstelle montieren, damit die Wirkdruckleitungen immer mit Flüssigkeit gefüllt sind und Gasblasen zurück zur Prozessleitung steigen können
- Bei Messungen in Medien mit Feststoffanteilen, wie z. B. schmutzigen Flüssigkeiten, ist die Montage von Abscheidern und Ablassventilen sinnvoll. Ablagerungen können so abgefangen und entfernt werden.

Abb. 21: Messanordnung bei Differenzdruckmessung in Flüssigkeiten

- 1 z. B. Filter
- 2 Absperrventile
- 3 3-fach-Ventilblock
- 4 Abscheider
- 5 Ablassventile
- 6 VEGADIF 85

Beim Einsatz von Druckmittlersystemen in allen Medien

- Druckmittler mit Kapillaren oben oder seitlich auf Rohrleitung montieren
- Bei Vakuumanwendungen: VEGADIF 85 unterhalb der Messstelle montieren
- Für beide Kapillaren sollte die Umgebungstemperatur gleich sein

Abb. 22: Messanordnung bei Differenzdruckmessung in Gasen, Dämpfen und Flüssigkeiten

- 1 Druckmittler mit Rohrverschraubung
- 2 Kapillare
- 3 Z. B. Filter
- 4 VEGADIF 85

4.5.5 Dichte

- Gerät unterhalb des unteren Druckmittlers montieren
- Für eine hohe Messgenauigkeit müssen die beiden Messpunkte möglichst weit auseinander liegen
- Für beide Kapillaren sollte die Umgebungstemperatur gleich sein

Abb. 23: Messanordnung bei Dichtemessung

Die Dichtemessung ist nur bei einem Füllstand oberhalb des oberen Messpunktes möglich. Sinkt der Füllstand unter den oberen Messpunkt, arbeitet die Messung mit dem letzten Dichtewert weiter.

Diese Dichtemessung funktioniert sowohl bei offenen, als auch bei geschlossenen Behältern. Dabei ist zu beachten, dass kleine Änderungen in der Dichte auch nur kleine Änderungen am gemessenen Differenzdruck bewirken.

Dichtemessung

Beispiel

Abstand zwischen den beiden Messpunkten 0,3 m, min. Dichte 1000 kg/m³, max. Dichte 1200 kg/m³

Min.-Abgleich für den bei Dichte 1,0 gemessenen Differenzdruck durchführen:

 $\Delta p = \rho \bullet g \bullet h$

= 1000 kg/m³ • 9,81 m/s² • 0,3 m

= 2943 Pa = 29,43 mbar

Max.-Abgleich für den bei Dichte 1,2 gemessenen Differenzdruck durchführen:

4.5.6 Trennschicht

Trennschichtmessung

- Gerät unterhalb des unteren Druckmittlers montieren
- Für beide Kapillaren sollte die Umgebungstemperatur gleich sein

Abb. 24: Messanordnung bei Trennschichtmessung

Eine Trennschichtmessung ist nur möglich, wenn die Dichten der beiden Medien gleich bleiben und die Trennschicht immer zwischen den beiden Messpunkten liegt. Der Gesamtfüllstand muss oberhalb des oberen Messpunktes liegen.

Diese Dichtemessung funktioniert sowohl bei offenen, als auch bei geschlossenen Behältern.

Beispiel

Abstand zwischen den beiden Messpunkten 0,3 m, min. Dichte 800 kg/m³, max. Dichte 1000 kg/m³

Min.-Abgleich für den Differenzdruck durchführen, der bei Höhe der Trennschicht auf dem unteren Messpunkt gemessen wird:

 $\Delta p = \rho \cdot g \cdot h$ = 800 kg/m³ • 9,81 m/s • 0,3 m

= 2354 Pa = 23,54 mbar

Max.-Abgleich für den Differenzdruck durchführen, der bei Höhe der Trennschicht auf dem oberen Messpunkt gemessen wird:

$$\begin{aligned} \Delta p &= \rho \bullet g \bullet h \\ &= 1000 \text{ kg/m}^3 \bullet 9,81 \text{ m/s} \bullet 0,3 \text{ m} \end{aligned}$$

53571-DE-230804

= 2943 Pa = 29,43 mbar

5 An die Spannungsversorgung und das Bussystem anschließen

5.1 Anschluss vorbereiten

Sicherheitshinweise

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

- Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen
- Falls Überspannungen zu erwarten sind, Überspannungsschutzgeräte installieren

Warnung:

Nur in spannungslosem Zustand anschließen bzw. abklemmen.

Spannungsversorgung

Die Betriebsspannung und das digitale Bussignal werden über getrennte zweiadrige Anschlusskabel geführt.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "*Technische Daten*".

Hinweis:

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis (Leistung max. 100 W) nach IEC 61010-1, z. B.:

- Class 2-Netzteil (nach UL1310)
- SELV-Netzteil (Sicherheitskleinspannung) mit passender interner oder externer Begrenzung des Ausgangsstromes

AnschlusskabelDas Gerät wird mit handelsüblichem zweiadrigem, verdrillten Kabel
mit Eignung für RS 485 angeschlossen. Falls elektromagnetische Ein-
streuungen zu erwarten sind, die über den Prüfwerten der EN 61326
für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet
werden.

Verwenden Sie bei Geräten mit Gehäuse und Kabelverschraubung Kabel mit rundem Querschnitt. Verwenden Sie eine zum Kabeldurchmesser passende Kabelverschraubung, um die Dichtwirkung der Kabelverschraubung (IP-Schutzart) sicher zu stellen.

Beachten Sie, dass die gesamte Installation gemäß Feldbusspezifikation ausgeführt wird. Insbesondere ist auf die Terminierung des Busses über entsprechende Abschlusswiderstände zu achten.

Kabelverschraubungen Metrische Gewinde: Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde:

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die

freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

1	Hinweis: Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.
	Beim Kunststoffgehäuse muss die NPT-Kabelverschraubung bzw. das Conduit-Stahlrohr ohne Fett in den Gewindeeinsatz geschraubt werden.
	Maximales Anzugsmoment für alle Gehäuse siehe Kapitel "Techni- sche Daten".
Kabelschirmung und Erdung	Beachten Sie, dass Kabelschirmung und Erdung gemäß Feldbus- spezifikation ausgeführt werden. Wir empfehlen, die Kabelschirmung beidseitig auf Erdpotenzial zu legen.
	Bei Anlagen mit Potenzialausgleich legen Sie die Kabelschirmung am Speisegerät und am Sensor direkt auf Erdpotenzial. Dazu muss die Kabelschirmung im Sensor direkt an die innere Erdungsklemme an- geschlossen werden. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Potenzialausgleich verbunden sein.
	5.2 Anschließen
Anschlusstechnik	Der Anschluss der Spannungsversorgung und des Signalausganges erfolgt über Federkraftklemmen im Gehäuse.
	Die Verbindung zum Anzeige- und Bedienmodul bzw. zum Schnittstel- lenadapter erfolgt über Kontaktstifte im Gehäuse.
3	Information: Der Klemmenblock ist steckbar und kann von der Elektronik abge- zogen werden. Hierzu Klemmenblock mit einem kleinen Schrauben- dreher anheben und herausziehen. Beim Wiederaufstecken muss er hörbar einrasten.
Anschlussschritte	Gehen Sie wie folgt vor:
	1. Gehäusedeckel abschrauben
	 Überwurfmutter der Kabelverschraubung lösen und Verschluss- stopfen herausnehmen
	 Anschlusskabel des Signalausganges ca. 10 cm (4 in) abman- teln, Aderenden ca. 1 cm (0.4 in) abisolieren
	4. Kabel durch die Kabelverschraubung in den Sensor schieben

Abb. 25: Anschlussschritte 5 und 6

5. Aderenden nach Anschlussplan in die Klemmen stecken

Information:

Feste Adern sowie flexible Adern mit Aderendhülsen werden direkt in die Klemmenöffnungen gesteckt. Bei flexiblen Adern ohne Endhülse mit einem kleinen Schraubendreher oben auf die Klemme drücken, die Klemmenöffnung wird freigegeben. Durch Lösen des Schraubendrehers werden die Klemmen wieder geschlossen.

- 6. Korrekten Sitz der Leitungen in den Klemmen durch leichtes Ziehen prüfen
- Kabelschirmung an die innere Erdungsklemme anschließen, die bei Versorgung über Kleinspannung äußere Erdungsklemme mit dem Potenzialausgleich verbinden
- Anschlusskabel f
 ür die Spannungsversorgung in gleicher Weise nach Anschlussplan auflegen, bei Versorgung mit Netzspanung zus
 ätzlich den Schutzleiter an die innere Erdungsklemme anschlie
 ßen.
- 9. Überwurfmutter der Kabelverschraubung fest anziehen. Der Dichtring muss das Kabel komplett umschließen
- 10. Gehäusedeckel verschrauben

Der elektrische Anschluss ist somit fertig gestellt.

Information:

Die Klemmenblöcke sind steckbar und können vom Gehäuseeinsatz abgezogen werden. Hierzu Klemmenblock mit einem kleinen Schraubendreher anheben und herausziehen. Beim Wiederaufstecken muss er hörbar einrasten.

5.3 Anschlussplan

Übersicht

Abb. 26: Position von Anschlussraum (Modbuselektronik) und Elektronikraum (Sensorelektronik)

- 1 Anschlussraum
- 2 Elektronikraum

Elektronikraum

Abb. 27: Elektronikraum - Zweikammergehäuse

- 1 Interne Verbindung zum Anschlussraum
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter

Anschlussraum

Abb. 28: Anschlussraum

- 1 USB-Schnittstelle
- 2 Schiebeschalter für integrierten Terminierungswiderstand (120 Ω)
- 3 Modbus-Signal
- 4 Spannungsversorgung

Klemme	Funktion	Polarität
1	Spannungsversorgung	+

Klemme	Funktion	Polarität
2	Spannungsversorgung	-
3	Modbus-Signal D0	+
4	Modbus-Signal D1	-
5	Funktionserde bei Installation nach CSA (Canadian Standards Associ- ation)	

5.4 Externes Gehäuse bei Ausführung IP68 (25 bar)

Elektronik- und Anschlussraum für Versorgung

Abb. 29: Elektronik- und Anschlussraum

- 1 Elektronikeinsatz
- 2 Kabelverschraubung für die Spannungsversorgung
- 3 Kabelverschraubung für Anschlusskabel Messwertaufnehmer

Klemmraum Gehäusesockel

Abb. 30: Anschluss des Sensors im Gehäusesockel

- 1 Gelb
- 2 Weiß
- 3 Rot
- 4 Schwarz
- 5 Abschirmung
- 6 Druckausgleichskapillare

Anschlussraum

Abb. 31: Anschlussraum

- 1 USB-Schnittstelle
- 2 Schiebeschalter für integrierten Terminierungswiderstand (120 Ω)
- 3 Modbus-Signal
- 4 Spannungsversorgung

Klemme	Funktion	Polarität
1	Spannungsversorgung	+
2	Spannungsversorgung	-
3	Modbus-Signal D0	+
4	Modbus-Signal D1	-

Klemme	Funktion	Polarität
5	Funktionserde bei Installation nach CSA (Canadian Standards Associ- ation)	

5.5 Einschaltphase

Nach dem Anschluss des Gerätes an die Spannungsversorgung bzw. nach Spannungswiederkehr führt das Gerät einen Selbsttest durch:

- Interne Prüfung der Elektronik
- Anzeige einer Statusmeldung auf Display bzw. PC

Danach wird der aktuelle Messwert auf der Signalleitung ausgegeben. Der Wert berücksichtigt bereits durchgeführte Einstellungen, z. B. den Werksabgleich.

6 Sensor mit dem Anzeige- und Bedienmodul in Betrieb nehmen

6.1 Anzeige- und Bedienmodul einsetzen

Das Anzeige- und Bedienmodul kann jederzeit in den Sensor eingesetzt und wieder entfernt werden. Dabei sind vier Positionen im 90°-Versatz wählbar. Eine Unterbrechung der Spannungsversorgung ist hierzu nicht erforderlich.

Gehen Sie wie folgt vor:

- 1. Gehäusedeckel abschrauben
- 2. Anzeige- und Bedienmodul in die gewünschte Position auf die Elektronik setzen und nach rechts bis zum Einrasten drehen
- 3. Gehäusedeckel mit Sichtfenster fest verschrauben

Der Ausbau erfolgt sinngemäß umgekehrt.

Das Anzeige- und Bedienmodul wird vom Sensor versorgt, ein weiterer Anschluss ist nicht erforderlich.

Abb. 32: Einsetzen des Anzeige- und Bedienmoduls

Hinweis:

Falls Sie das Gerät mit einem Anzeige- und Bedienmodul zur ständigen Messwertanzeige nachrüsten wollen, ist ein erhöhter Deckel mit Sichtfenster erforderlich.

durch.

6.2 Bediensystem

Abb. 34: Anzeige- und Bedienelemente - mit Bedienung über Magnetstift

- 1 LC-Display
- 2 Magnetstift
- 3 Bedientasten
- 4 Deckel mit Sichtfenster

Zeitfunktionen

Messwertanzeige

Bei einmaligem Betätigen der *[+]*- und *[->]*-Tasten ändert sich der editierte Wert bzw. der Cursor um eine Stelle. Bei Betätigen länger als 1 s erfolgt die Änderung fortlaufend.

Gleichzeitiges Betätigen der **[OK]**- und **[ESC]**-Tasten für mehr als 5 s bewirkt einen Rücksprung ins Grundmenü. Dabei wird die Menüsprache auf "*Englisch*" umgeschaltet.

Ca. 60 Minuten nach der letzten Tastenbetätigung wird ein automatischer Rücksprung in die Messwertanzeige ausgelöst. Dabei gehen die noch nicht mit **[OK]** bestätigten Werte verloren.

6.3 Messwertanzeige

Mit der Taste [->] können Sie zwischen drei verschiedenen Anzeigemodi wechseln.

In der ersten Ansicht wird der ausgewählte Messwert in großer Schrift angezeigt.

In der zweiten Ansicht werden der ausgewählte Messwert und eine entsprechende Bargraph-Darstellung angezeigt.

In der dritten Ansicht werden der ausgewählte Messwert sowie ein zweiter auswählbarer Wert, z. B. der Temperaturwert, angezeigt.

Mit der Taste "**OK**" wechseln Sie bei der ersten Inbetriebnahme des Gerätes in das Auswahlmenü "*Sprache*".

Auswahl Sprache

Dieser Menüpunkt dient zur Auswahl der Landessprache für die weitere Parametrierung.

Sprache	
Deutsch	
Englisch	i i i i i i i i i i i i i i i i i i i
Francais	;
Espanol	
Pycckuu	
•	

Mit der Taste Taste "[->]" wählen Sie die gewünschte Sprache aus, "OK" bestätigen Sie die Auswahl und wechseln ins Hauptmenü.

Eine spätere Änderung der getroffenen Auswahl ist über den Menüpunkt "Inbetriebnahme - Display, Sprache des Menüs" jederzeit möglich.

6.4 Parametrierung - Schnellinbetriebnahme

Um den Sensor schnell und vereinfacht an die Messaufgabe anzupassen, wählen Sie im Startbild des Anzeige- und Bedienmoduls den Menüpunkt "*Schnellinbetriebnahme*".

Schnell-Inbetriebnahme
Erweiterte Bedienung

Wählen Sie die einzelnen Schritte mit der [->]-Taste an.

Nach Abschluss des letzten Schrittes wird kurzzeitig "Schnellinbetriebnahme erfolgreich abgeschlossen" angezeigt.

Der Rücksprung in die Messwertanzeige erfolgt über die [->]- oder [ESC]-Tasten oder automatisch nach 3 s

Hinweis:

Eine Beschreibung der einzelnen Schritte finden Sie in der Kurz-Betriebsanleitung zum Sensor.

Die "Erweiterte Bedienung" finden Sie im nächsten Unterkapitel.

6.5 Parametrierung - Erweiterte Bedienung

Bei anwendungstechnisch anspruchsvollen Messstellen können Sie in der "*Erweiterten Bedienung*" weitergehende Einstellungen vornehmen.

Hauptmenü

Das Hauptmenü ist in fünf Bereiche mit folgender Funktionalität aufgeteilt:

Inbetriebnahme: Einstellungen z. B. zu Messstellenname, Anwendung, Einheiten, Lagekorrektur, Abgleich, Signalausgang, Bedienung sperren/freigeben

Display: Einstellungen z. B. zur Sprache, Messwertanzeige, Beleuchtung

Diagnose: Informationen z. B. zu Gerätestatus, Schleppzeiger, Simulation

Weitere Einstellungen: Datum/Uhrzeit, Reset, Kopierfunktion

Info: Gerätename, Hard- und Softwareversion, Werkskalibrierdatum, Sensormerkmale

Hinweis:Zur optim

Zur optimalen Einstellung der Messung sollten die einzelnen Untermenüpunkte im Hauptmenüpunkt "*Inbetriebnahme*" nacheinander ausgewählt und mit den richtigen Parametern versehen werden. Halten Sie die Reihenfolge möglichst ein.

Die Untermenüpunkte sind nachfolgend beschrieben.

6.5.1 Inbetriebnahme

Messstellenname

Im Menüpunkt "Sensor-TAG" editieren Sie ein zwölfstelliges Messstellenkennzeichen.

Dem Sensor kann damit eine eindeutige Bezeichnung gegeben werden, beispielsweise der Messstellenname oder die Tank- bzw. Produktbezeichnung. In digitalen Systemen und der Dokumentation von größeren Anlagen muss zur genaueren Identifizierung der einzelnen Messstellen eine einmalige Bezeichnung eingegeben werden.

Der Zeichenvorrat umfasst:

- Buchstaben von A ... Z
- Zahlen von 0 ... 9
- Sonderzeichen +, -, /, -

Anwendung

Der VEGADIF 85 ist zur Durchfluss-, Differenzdruck-, Dichte- und Trennschichtmessung einsetzbar. Die Werkseinstellung ist Differenzdruckmessung. Die Umschaltung erfolgt in diesem Bedienmenü.

Je nach Ihrer gewählten Anwendung sind deshalb in den folgenden Bedienschritten unterschiedliche Unterkapitel von Bedeutung. Dort finden Sie die einzelnen Bedienschritte.

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Ihre Eingaben mit **[OK]** und gehen Sie mit **[ESC]** und **[->]** zum nächsten Menüpunkt.

Einheiten

Abgleicheinheit:

In diesem Menüpunkt werden die Abgleicheinheiten des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit

in den Menüpunkten "*Min.-Abgleich (Zero)*" und "*Max.-Abgleich (Span)*".

Soll der Füllstand in einer Höheneinheit abgeglichen werden, so ist später beim Abgleich zusätzlich die Eingabe der Dichte des Mediums erforderlich.

Temperatureinheit:

Zusätzlich wird die Temperatureinheit des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit in den Menüpunkten "*Schleppzeiger Temperatur*" und "in den Variablen des digitalen Ausgangssignals".

Einheit statischer Druck:

Zusätzlich wird die Einheit statischer Druck festgelegt.

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Ihre Eingaben mit **[OK]** und gehen Sie mit **[ESC]** und **[->]** zum nächsten Menüpunkt.

Lagekorrektur

Die Einbaulage des Gerätes kann den Messwert verschieben (Offset). Die Lagekorrektur kompensiert diesen Offset. Dabei kann der aktuelle Messwert automatisch übernommen werden.

Der VEGADIF 85 verfügt über zwei getrennte Sensorsysteme: Sensor für den Differenzdruck und Sensor für den statischen Druck. Für die Lagekorrektur bestehen deshalb folgende Möglichkeiten:

- Automatische Korrektur für beide Sensoren
- Manuelle Korrektur für Differenzdruck
- Manuelle Korrektur für statischen Duck

Bei der automatischen Lagekorrektur wird der aktuelle Messwert als Korrekturwert übernommen. Er darf dabei nicht durch Füllgutbedeckung oder einen statischen Druck verfälscht sein.

Bei der manuellen Lagekorrektur wird der Offsetwert durch den Anwender festgelegt. Wählen Sie hierzu die Funktion "*Editieren*" und geben Sie den gewünschten Wert ein.

Nach durchgeführter Lagekorrektur ist der aktuelle Messwert zu 0 korrigiert. Der Korrekturwert steht mit umgekehrten Vorzeichen als Offsetwert im Display.

Der Korrekturwert muss innerhalb des Nennmessbereichs liegen, unabhängig davon, ob der Korrekturwert automatisch ermittelt oder manuell eingegeben wird. Je nach Korrekturwert verringert beziehungsweise vergrößert sich scheinbar der Nennmessbereich. Dies ist jedoch lediglich eine Folge des eingerechneten Offsets. Der tatsächliche Nennmessbereich ändert sich nicht. Die nachfolgende Grafik verdeutlicht dies:

Abb. 35: Beispiel Korrekturwert

- 1 Untere Grenze des Nennmessbereichs
- 2 Obere Grenze des Nennmessbereichs
- 3 Korrekturwert (Beispiel); wird auf Display als "0" angezeigt
- 4 Scheinbar verringerter/vergrößerter Nennmessbereich

Die Lagekorrektur lässt sich beliebig oft wiederholen.

AbgleichDer VEGADIF 85 misst unabhängig von der im Menüpunkt "Anwen-
dung" gewählten Prozessgröße immer einen Druck. Um die gewählte
Prozessgröße richtig ausgeben zu können, muss eine Zuweisung zu
0 % und 100 % des Ausgangssignals erfolgen (Abgleich).

Bei der Anwendung "*Füllstand*" wird zum Abgleich der hydrostatische Druck, z. B. bei vollem und leerem Behälter eingegeben. Ein überlagerter Druck wird durch die Niederdruckseite erfasst und automatisch kompensiert. Siehe folgendes Beispiel:

Abb. 36: Parametrierbeispiel Min.-/Max.-Abgleich Füllstandmessung

- 1 Min. Füllstand = 0 % entspricht 0,0 mbar
- 2 Max. Füllstand = 100 % entspricht 490,5 mbar

Sind diese Werte nicht bekannt, kann auch mit Füllständen von beispielsweise 10 % und 90 % abgeglichen werden. Anhand dieser Eingaben wird dann die eigentliche Füllhöhe errechnet.

Der aktuelle Füllstand spielt bei diesem Abgleich keine Rolle, der Min.-/Max.-Abgleich wird immer ohne Veränderung des Mediums durchgeführt. Somit können diese Einstellungen bereits im Vorfeld durchgeführt werden, ohne dass das Gerät eingebaut sein muss.

• Hinweis: Werden d

Werden die Einstellbereiche überschritten, so wird der eingegebene Wert nicht übernommen. Das Editieren kann mit *[ESC]* abgebrochen oder auf einen Wert innerhalb der Einstellbereiche korrigiert werden.

Für die übrigen Prozessgrößen wie z. B. Prozessdruck, Differenzdruck oder Durchfluss wird der Abgleich entsprechend durchgeführt.

Information:

Je nach Behälterform und Abgleich werden Füllstände von -10 % ... +110 % angezeigt. Damit können - in gewissen Grenzen auch "Unterfüllung" und "Überfüllung" angezeigt werden.

Min.-Abgleich - Füllstand

Gehen Sie wie folgt vor:

 Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Abgleich", dann "Min.-Abgleich" auswählen und mit [OK] bestätigen. 53571-DE-230804

	Abgleich	MinAbgleich	MinAbgleich
	MinAbgleich	0.00×	000.00
	MaxHbgleich	0.0500 bar 0.0000 bar	-10.00 100.00
	2. Mit [OK] den Proz die gewünschte S	entwert editieren und de telle setzen.	en Cursor mit [->] auf
	 Den gewünschten mit [OK] speichen 	Prozentwert mit [+] ein n. Der Cursor springt nu	stellen (z. B. 10 %) und In auf den Druckwert.
	4. Den zugehörigen (z. B. 0 mbar).	Druckwert für den Min	Füllstand eingeben
	5. Einstellungen mit MaxAbgleich we	[OK] speichern und mit chseln.	[ESC] und [->] zum
	Der MinAbgleich ist o	damit abgeschlossen.	
	Für einen Abgleich mit dem Display angezeig	t Befüllung geben Sie ei Iten aktuellen Messwert	infach den unten auf ein.
MaxAbgleich - Füllstand	Gehen Sie wie folgt vo	or:	
-	 Mit [->] den Menü bestätigen. 	punkt MaxAbgleich au	uswählen und mit [OK]
	Abgleich	MaxAbgleich	MaxAbgleich
	MinAbgleich Max-Abgleich	100.00× ≜	100.00 ⊡ 100.00
		1.0000 bar 0.0001 bar	-10.00 100.00
	2. Mit [OK] den Proz die gewünschte S	entwert editieren und de telle setzen.	en Cursor mit [->] auf
	 Den gewünschten mit [OK] speichen 	Prozentwert mit [+] ein n. Der Cursor springt nu	stellen (z. B. 90 %) und In auf den Druckwert.
	4. Passend zum Proz eingeben (z. B. 90	zentwert den Druckwert 0 mbar).	t für den vollen Behälter
	5. Einstellungen mit	[OK] speichern	
	Der MaxAbgleich ist	damit abgeschlossen.	
	Für einen Abgleich mit dem Display angezeig	t Befüllung geben Sie ei Iten aktuellen Messwert	infach den unten auf ein.
MinAbgleich Durchfluss	Gehen Sie wie folgt vo	or:	
	 Den Menüpunkt "/ [OK] bestätigen. N auswählen und mi 	Inbetriebnahme" mit [->] Nun mit [->] den Menüp it [OK] bestätigen.] auswählen und mit unkt " <i>MinAbgleich</i> "
	Abgleich	MinAbgleich	MinAbgleich
	Min-Abgleich MaxAbgleich	0.000 bar 0.0000 bar	-2.039 12.237
	2. Mit [OK] den mba gewünschte Stelle	r-Wert editieren und der e setzen.	n Cursor mit [->] auf die
	3 Den gewünschten	mbar-Wert mit [+] eine	tellen und mit [OK]

- 3. Den gewünschten mbar-Wert mit [+] einstellen und mit [OK] speichern.
- 4. Mit [ESC] und [->] zum Span-Abgleich wechseln

53571-DE-230804

Bei Durchfluss in zwei Richtungen (bidirektional) ist auch ein negativer Differenzdruck möglich. Beim Min.-Abgleich ist dann der maximale negative Druck einzugeben. Bei der Linearisierung ist entsprechend "bidirektional" bzw. "bidirektional-radiziert" auszuwählen, siehe Menüpunkt "Linerarisierung".

Der Min.-Abgleich ist damit abgeschlossen.

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Max.-Abgleich Durchfluss Gehen Sie wie folgt vor:

1. Mit [->] den Menüpunkt Max.-Abgleich auswählen und mit [OK] bestätigen.

- Mit [OK] den mbar-Wert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten mbar-Wert mit [+] einstellen und mit [OK] speichern.

Der Max.-Abgleich ist damit abgeschlossen.

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Zero-Abgleich Differenzdruck

Gehen Sie wie folgt vor:

1. Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Zero-Abgleich" auswählen und mit [OK] bestätigen.

- 2. Mit [OK] den mbar-Wert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten mbar-Wert mit [+] einstellen und mit [OK] speichern.
- 4. Mit [ESC] und [->] zum Span-Abgleich wechseln

Der Zero-Abgleich ist damit abgeschlossen.

Information:

Der Zero-Abgleich verschiebt den Wert des Span-Abgleichs. Die Messspanne, d. h. der Unterschiedsbetrag zwischen diesen Werten, bleibt dabei erhalten.

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Span-Abgleich Differenzdruck

Gehen Sie wie folgt vor:

1. Mit [->] den Menüpunkt Span-Abgleich auswählen und mit [OK] bestätigen.

- Mit [OK] den mbar-Wert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten mbar-Wert mit [+] einstellen und mit [OK] speichern.

Der Span-Abgleich ist damit abgeschlossen.

Für einen Abgleich mit Druck geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Abstand Dichte

Gehen Sie wie folgt vor:

Im Menüpunkt "Inbetriebnahme" mit [->] "Abgleich" auswählen und mit [OK] bestätigen. Nun den Menüpunkt "Abstand" mit [OK] bestätigen.

- Mit [OK] den Sensorabstand editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- Den Abstand mit [+] einstellen und mit [OK] speichern.

Die Eingabe des Abstandes ist damit abgeschlossen.

Min.-Abgleich Dichte

Gehen Sie wie folgt vor:

 Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Min.-Abgleich" auswählen und mit [OK] bestätigen.

- Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Dichtewert.
- 4. Passend zum Prozentwert die minimale Dichte eingeben.
- 5. Einstellungen mit *[OK]* speichern und mit *[ESC]* und *[->]* zum Max.-Abgleich wechseln.

Der Min.-Abgleich Dichte ist damit abgeschlossen.

Max.-Abgleich Dichte

Gehen Sie wie folgt vor:

53571-DE-230804

 Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Max.-Abgleich" auswählen und mit [OK] bestätigen.

- Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Dichtewert.
- 4. Passend zum Prozentwert die maximale Dichte eingeben.

Der Max.-Abgleich Dichte ist damit abgeschlossen.

Abstand Trennschicht

- Gehen Sie wie folgt vor:
 - Im Menüpunkt "Inbetriebnahme" mit [->] "Abgleich" auswählen und mit [OK] bestätigen. Nun den Menüpunkt "Abstand" mit [OK] bestätigen.

- Mit [OK] den Sensorabstand editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den Abstand mit [+] einstellen und mit [OK] speichern.

Die Eingabe des Abstandes ist damit abgeschlossen.

Min.-Abgleich Trennschicht

Gehen Sie wie folgt vor:

 Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Min.-Abgleich" auswählen und mit [OK] bestätigen.

- Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Höhenwert.
- 4. Passend zum Prozentwert die minimale Höhe der Trennschicht eingeben.
- 5. Einstellungen mit *[OK]* speichern und mit *[ESC]* und *[->]* zum Max.-Abgleich wechseln.

Der Min.-Abgleich Trennschicht ist damit abgeschlossen.

Max.-Abgleich Trennschicht Gehen Sie wie folgt vor:

 Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Max.-Abgleich" auswählen und mit [OK] bestätigen.

- Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- 3. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Höhenwert.
- 4. Passend zum Prozentwert die maximale Höhe der Trennschicht eingeben.

Der Max.-Abgleich Trennschicht ist damit abgeschlossen.

DämpfungZur Dämpfung von prozessbedingten Messwertschwankungen stel-
len Sie in diesem Menüpunkt eine Integrationszeit von 0 ... 999 s ein.
Die Schrittweite beträgt 0,1 s.

Die eingestellte Integrationszeit ist für Füllstand- und Prozessdruckmessung sowie für alle Anwendungen der elektronischen Differenzdruckmessung wirksam.

Die Werkseinstellung ist eine Dämpfung von 0 s.

Linearisierung

Eine Linearisierung ist bei allen Messaufgaben erforderlich, bei denen die gemessene Prozessgröße nicht linear mit dem Messwert ansteigt. Das gilt z. B. für Durchfluss gemessen über Differenzdruck oder Behältervolumen gemessen über Füllstand. Für diese Fälle sind entsprechende Linearisierungskurven hinterlegt. Sie geben das Verhältnis zwischen prozentualem Messwert und der Prozessgröße an. Die Linearisierung gilt für die Messwertanzeige und den Stromausgang.

Bei Durchflussmessung und Auswahl "*Linear*" sind Anzeige und Ausgang (Prozentwert/Strom) linear zum "**Differenzdruck**". Damit kann z. B. ein Durchflussrechner gespeist werden.

Bei Durchflussmessung und Auswahl "Radiziert" sind Anzeige und Ausgang (Prozentwert/Strom) linear zum "Durchfluss".²⁾

²⁾ Das Gerät geht von annähernd konstanter Temperatur und statischem Druck aus und errechnet über die radizierte Kennlinie den Durchfluss aus dem gemessenen Differenzdruck. Bei Durchfluss in zwei Richtungen (bidirektional) ist auch ein negativer Differenzdruck möglich. Dies ist bereits im Menüpunkt "*Min.-Abgleich Durchfluss*" zu berücksichtigen.

Vorsicht:

Beim Einsatz des jeweiligen Sensors als Teil einer Überfüllsicherung nach WHG ist folgendes zu beachten:

Wird eine Linearisierungskurve gewählt, so ist das Messsignal nicht mehr zwangsweise linear zur Füllhöhe. Dies ist vom Anwender insbesondere bei der Einstellung des Schaltpunktes am Grenzsignalgeber zu berücksichtigen.

Bedienung sperren/freigeben

Im Menüpunkt "Bedienung sperren/freigeben" schützen Sie die Sensorparameter vor unerwünschten oder unbeabsichtigten Änderungen.

Dies erfolgt durch Eingabe einer vierstelligen PIN.

Bei aktiver PIN sind nur noch folgende Bedienfunktionen ohne PIN-Eingabe möglich:

- Menüpunkte anwählen und Daten anzeigen
- Daten aus dem Sensor in das Anzeige- und Bedienmodul einlesen

Die Freigabe der Sensorbedienung ist zusätzlich in jedem beliebigen Menüpunkt durch Eingabe der PIN möglich.

Vorsicht:

Bei aktiver PIN ist die Bedienung über PACTware/DTM und andere Systeme ebenfalls gesperrt.

6.5.2 Display

Dieser Menüpunkt ermöglicht Ihnen die Einstellung der gewünschten Landessprache.

Display
Sprache des Menüs
Anzeigewert 1
Anzeigewert 2
Anzeigeformat
Beleuchtung

Sprache des Menüs	
✓Deutsch	
English	
Français	
Español	
Pycckuu	
•	

Folgende Sprachen sind verfügbar:

- Deutsch
- Englisch
- Französisch
- Spanisch
- Russisch
- Italienisch
- Niederländisch
- Portugiesisch
- Japanisch
- Chinesisch
- Polnisch

Sprache

- Tschechisch
- Türkisch

Der VEGADIF 85 ist im Auslieferungszustand auf Englisch eingestellt.

Anzeigewert 1 und 2 - la 4 ... 20 mA

In diesem Menüpunkt definieren Sie, welcher Messwert auf dem Display angezeigt wird.

Die Werkseinstellung für den Anzeigewert ist "Differenzdruck".

Anzeigeformat 1 und 2 In diesem Menüpunkt definieren Sie, mit wievielen Nachkommastellen der Messwert auf dem Display anzeigt wird.

Anzeigeformat 1	
✓Automatisch	
#	
#.#	
#.##	
#.###	
•	

Die Werkseinstellung für das Anzeigeformat ist "Automatisch".

Beleuchtung Das Anzeige- und Bedienmodul verfügt über eine Hintergrundbeleuchtung für das Display. In diesem Menüpunkt schalten Sie die Beleuchtung ein. Die erforderliche Höhe der Betriebsspannung finden Sie in Kapitel "Technische Daten".

Im Auslieferungszustand ist die Beleuchtung eingeschaltet.

In diesem Menüpunkt wird der Gerätestatus angezeigt.

6.5.3 Diagnose

Gerätestatus

	Schleppzeiger Druck Schleppzeiger Tenp. Simulation		
	Im Fehlerfall wird der Fehlercode, z. B. F017, die Fehlerbeschreibung, z. B. "Abgleichspanne zu klein" und ein vierstellige Zahl für Service- zwecke angezeigt. Die Fehlercodes mit Beschreibung, Ursache sowie Beseitigung finden Sie in Kapitel "Asset Management".		
Schleppzeiger Druck	Im Sensor werden der jeweils minimale und maximale Messwert für Differenzdruck und statischen Druck gespeichert. Im Menüpunkt "Schleppzeiger Druck" werden die beiden Werte angezeigt.		
	In einem weiteren Fenster können Sie für die Schleppzeigerwerte separat ein Reset durchführen.		

Diagnose Gerätestatus <mark>Schleppzeiger Druck</mark> Schleppzeiger Temp. Simulation Differenzdruck Min. – 0.507 bar Max. 0.507 bar Statischer Druck Min. 0.00 bar Max. 0.50 bar Reset Schleppzeiger

Prozessdruck Statischer Druck

Schleppzeiger Temperatur

 Im Sensor werden der jeweils minimale und maximale Messwert der Messzellen- und Elektroniktemperatur gespeichert. Im Menüpunkt "Schleppzeiger Temperatur" werden die beiden Werte angezeigt.

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Simulation

In diesem Menüpunkt simulieren Sie Messwerte. Damit lässt sich der Signalweg über das Busssystem zur Eingangskarte des Leitsystems testen.

Wählen Sie die gewünschte Simulationsgröße aus und stellen Sie den gewünschten Zahlenwert ein.

Um die Simulation zu deaktivieren, drücken Sie die **[ESC]**-Taste und bestätigen Sie die Meldung "*Simulation deaktivieren*" mit der **[OK]**-Taste.

Vorsicht:

Bei laufender Simulation wird der simulierte Wert als digitales Signal ausgegeben. Die Statusmeldung im Rahmen der Asset-Management-Funktion ist "*Maintenance*".

Information:

Der Sensor beendet die Simulation automatisch nach 60 Minuten.

6.5.4 Weitere Einstellungen

Datum/Uhrzeit

In diesem Menüpunkt wird die interne Uhr des Sensors eingestellt. Es erfolgt keine Umstellung auf Sommer-/Winterzeit.

Reset

Bei einem Reset werden bestimmte vom Anwender durchgeführte Parametereinstellungen zurückgesetzt.

Folgende Resetfunktionen stehen zur Verfügung:

Auslieferungszustand: Wiederherstellen der Parametereinstellungen zum Zeitpunkt der Auslieferung werkseitig inkl. der auftragsspezifischen Einstellungen. Eine frei programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Basiseinstellungen: Zurücksetzen der Parametereinstellungen inkl. Spezialparameter auf die Defaultwerte des jeweiligen Gerätes. Eine programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Summenzähler 1 und 2: Zurücksetzen der summierten Durchflussmengen bei Anwendung Durchfluss

Die folgende Tabelle zeigt die Defaultwerte des Gerätes. Je nach Geräteausführung oder Anwendung sind nicht alle Menüpunkte verfügbar bzw. unterschiedlich belegt:

Menüpunkt	Parameter	Defaultwert
Messstellenname		Sensor
Anwendung	Anwendung	Füllstand
Einheiten	Abgleicheinheit	mbar (bei Nennmessbereichen ≤ 400 mbar)
		bar (bei Nennmessbereichen ≥ 1 bar)
	Temperatureinheit	°C
Lagekorrektur		0,00 bar
Abgleich	Zero-/MinAbgleich	0,00 bar
		0,00 %
	Span-/MaxAbgleich	Nennmessbereich in bar
		100,00 %
Dämpfung	Integrationszeit	1 s
Linearisierung		Linear
Bedienung sperren		Freigegeben

Inbetriebnahme

Display

Menüpunkt	Defaultwert	
Sprache des Menüs	Auftragsspezifisch	
Anzeigewert 1	Stromausgang in %	
Anzeigewert 2	Keramische Messzelle: Messzellentemperatur in °C	
	Metallische Messzelle: Elektroniktemperatur in °C	

Menüpunkt	Defaultwert	
Anzeigeformat 1 und 2	Anzahl Nachkommastellen automatisch	
Beleuchtung	Eingeschaltet	

Diagnose

Menüpunkt	Parameter	Defaultwert
Gerätestatus		-
Schleppzeiger	Druck	Aktueller Messwert
	Temperatur	Aktuelle Temperaturwerte Messzelle, Elektronik
Simulation		Prozessdruck

Weitere Einstellungen

Menüpunkt	Parameter	Defaultwert
PIN		0000
Datum/Uhrzeit		Aktuelles Datum/Aktuelle Uhrzeit
Geräteeinstellungen ko- pieren		
Spezialparameter		Kein Reset
Skalierung	Skalierungsgröße	Volumen in I
	Skalierungsformat	0 % entspricht 0 I
		100 % entspricht 0 I

Geräteeinstellungen kopieren

Mit dieser Funktion werden Geräteeinstellungen kopiert. Folgende Funktionen stehen zur Verfügung:

- Aus Sensor lesen: Daten aus dem Sensor auslesen und in das Anzeige- und Bedienmodul speichern
- In Sensor schreiben: Daten aus dem Anzeige- und Bedienmodul zurück in den Sensor speichern

Folgende Daten bzw. Einstellungen der Bedienung des Anzeige- und Bedienmoduls werden hierbei gespeichert:

- Alle Daten der Menüs "Inbetriebnahme" und "Display"
- Im Menü "Weitere Einstellungen" die Punkte "Reset, Datum/Uhrzeit"
- Die frei programmierte Linearisierungskurve

Die kopierten Daten werden in einem EEPROM-Speicher im Anzeigeund Bedienmodul dauerhaft gespeichert und bleiben auch bei Spannungsausfall erhalten. Sie können von dort aus in einen oder mehrere Sensoren geschrieben oder zur Datensicherung für einen eventuellen Elektroniktausch aufbewahrt werden.

i	Hinweis: Vor dem Speichern der Daten in den Sensor geprüft, ob die Daten zum Sensor passen. Di typ der Quelldaten sowie der Zielsensor ange nicht passen, so erfolgt eine Fehlermeldung blockiert. Das Speichern erfolgt erst nach Fre	wird zur Sicherheit abei werden der Sensor- ezeigt. Falls die Daten ozw. wird die Funktion igabe.	
Skalierung (1)	Im Menüpunkt " <i>Skalierung (1)</i> " definieren Sie und die Skalierungseinheit für den Füllstandw z. B. Volumen in I.	die Skalierungsgröße vert auf dem Display,	
	Weitere Einstellungen Reset Geräteeinstell. kopieren Bezierung Stronausgang HART-Betriebsart T	Masse Durchfluss Uolumen Sonstige	
Skalierung (2)	Im Menüpunkt " <i>Skalierung (2)</i> " definieren Sie auf dem Display und die Skalierung des Fülls 0 % und 100 %.	das Skalierungsformat tand-Messwertes für	
	Weitere Einstellungen Skalierung Reset Geräteeinstell, kopieren Skalierungsgröße Stealierung Stronausgang HART-Betriebsart	Skalierung 100 % = 100 1 0 % = 0 1	
Kennwerte Wirkdruck- geber	In diesem Menüpunkt werden die Einheiten für den Wirkdruckgeber festgelegt sowie die Auswahl Massen- oder Volumendurchfluss getroffen.		
	Weitere Einstellungen Stronausgang HRRT-Betriebsart <u>Wirkdruckgeber</u> Spezialparaneter 	Einheit Massedurchfluss Volunendurchfl.	
	Einheit Wirkdruckgeber g/nin g/h Einheit kg/nin kg/h	Abgleich 100 % = 1 kg/s 0 % = 0 kg/s	
	Weiterhin wird der Abgleich für den Volumen- bei 0 % bzw. 100 % durchgeführt.	bzw. Massendurchfluss	
	Das Gerät summiert den Durchfluss automat Einheit. Bei entsprechendem Abgleich und b rung wird der Durchfluss sowohl positiv als a	isch in der ausgewählten idirektionaler Linearisie- uch negativ gezählt.	
Spezialparameter	In diesem Menüpunkt gelangen Sie in einen Spezialparameter einzugeben. In seltenen Fä Parameter verändert werden, um den Sensor rungen anzupassen.	geschützten Bereich, um àllen können einzelne r an besondere Anforde-	
	Ändern Sie die Einstellungen der Spezialpara sprache mit unseren Servicemitarbeitern.	ameter nur nach Rück-	

Weitere Einstellungen	Service-Login
HART-Betriebsart	_
Wirkdruckgeber	1996
opezialparameter	
Datun/Uhrzeit	

6.5.5 Info

Gerätename

In diesem Menüpunkt lesen Sie den Gerätenamen und die Geräteseriennummer aus:

Geräteausführung

In diesem Menüpunkt wird die Hard- und Softwareversion des Sensors angezeigt.

Werkskalibrierdatum

In diesem Menüpunkt wird das Datum der werkseitigen Kalibrierung des Sensors sowie das Datum der letzten Änderung von Sensorparametern über das Anzeige- und Bedienmodul bzw. über den PC angezeigt.

Info
Gerätenane
Geräteversion
Werkskalibrierdatum
Sensormerkmale

Sensormerkmale

In diesem Menüpunkt werden Merkmale des Sensors wie Zulassung, Prozessanschluss, Dichtung, Messbereich, Elektronik, Gehäuse und weitere angezeigt.

7 Sensor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen

7.1 Den PC anschließen

An die Sensorelektronik

Der Anschluss des PCs an die Sensorelektronik erfolgt über den Schnittstellenadapter VEGACONNECT.

Parametrierumfang:

Sensorelektronik

Abb. 37: Anschluss des PCs via Schnittstellenadapter direkt am Sensor

- 1 USB-Kabel zum PC
- 2 Schnittstellenadapter VEGACONNECT
- 3 Sensor

An die Modbuselektronik

k Der Anschluss des PCs an die Modbuselektronik erfolgt über ein USB-Kabel.

Parametrierumfang:

- Sensorelektronik
- Modbuselektronik

Abb. 38: Anschluss des PCs via USB an die Modbuselektronik

1 USB-Kabel zum PC

An die RS 485-Leitung

Der Anschluss des PCs an die RS 485-Leitung erfolgt über einen handelsüblichen Schnittstellenadapter RS 485/USB.

Parametrierumfang:

- Sensorelektronik
- Modbuselektronik

Information:

Es ist für die Parametrierung zwingend erforderlich, die Verbindung zur RTU zu trennen.

Abb. 39: Anschluss des PCs via Schnittstellenadapter an die RS 485-Leitung

- 1 Schnittstellenadapter RS 485/USB
- 2 USB-Kabel zum PC
- 3 RS 485-Leitung
- 4 Sensor
- 5 Spannungsversorgung

7.2 Parametrieren

Voraussetzungen

Zur Parametrierung des Gerätes über einen Windows-PC ist die Konfigurationssoftware PACTware und ein passender Gerätetreiber (DTM) nach dem FDT-Standard erforderlich. Die jeweils aktuelle PACTware-Version sowie alle verfügbaren DTMs sind in einer DTM Collection zusammengefasst. Weiterhin können die DTMs in andere Rahmenapplikationen nach FDT-Standard eingebunden werden.

Hinweis:

Um die Unterstützung aller Gerätefunktionen sicherzustellen, sollten Sie stets die neueste DTM Collection verwenden. Weiterhin sind nicht alle beschriebenen Funktionen in älteren Firmwareversionen enthalten. Die neueste Gerätesoftware können Sie von unserer Homepage herunterladen. Eine Beschreibung des Updateablaufs ist ebenfalls im Internet verfügbar.

Die weitere Inbetriebnahme wird in der Betriebsanleitung "*DTM Collection/PACTware*" beschrieben, die jeder DTM Collection beiliegt und über das Internet heruntergeladen werden kann. Weiterführende Beschreibungen sind in der Online-Hilfe von PACTware und den DTMs enthalten.

Abb. 40: Beispiel einer DTM-Ansicht

Standard-/VollversionAlle Geräte-DTMs gibt es als kostenfreie Standardversion und
als kostenpflichtige Vollversion. In der Standardversion sind alle
Funktionen für eine komplette Inbetriebnahme bereits enthalten. Ein
Assistent zum einfachen Projektaufbau vereinfacht die Bedienung
erheblich. Auch das Speichern/Drucken des Projektes sowie eine
Import-/Exportfunktion sind Bestandteil der Standardversion.

In der Vollversion ist zusätzlich eine erweiterte Druckfunktion zur vollständigen Projektdokumentation sowie die Speichermöglichkeit von Messwert- und Echokurven enthalten. Weiterhin ist hier ein Tankkalkulationsprogramm sowie ein Multiviewer zur Anzeige und Analyse der gespeicherten Messwert- und Echokurven verfügbar.

Die Standardversion kann auf <u>www.vega.com/downloads</u> und "*Software*" heruntergeladen werden. Die Vollversion erhalten Sie auf einer CD über Ihre zuständige Vertretung.

7.3 Geräteadresse einstellen

Der VEGADIF 85 benötigt eine Adresse, um als Sensor an der Modbus-Kommunikation teilzunehmen. Die Adresseinstellung erfolgt via PC mit PACTware/DTM oder die Modbus RTU.

Die Werkseinstellungen für die Adresse sind:

- Modbus: 246
- Levelmaster: 31

Hinweis: Die Einste

Die Einstellung der Geräteadresse ist nur online möglich.

Starten Sie den Projektassistenten und lassen Sie den Projektbaum aufbauen. Gehen Sie im Projektbaum auf das Symbol für das Modbus-Gateway. Wählen Sie mit der rechten Maustaste "*Parame*-

53571-DE-230804

Via PC über Modbus-

Elektronik

ter", dann "*Online-Parametrierung*" und starten Sie so den DTM für die Modbus-Elektronik.

Gehen Sie auf der Menüleiste des DTMs auf den Listpfeil neben dem Symbol für "Schraubenschlüssel". Wählen Sie den Menüpunkt "Adresse im Gerät ändern" und stellen Sie die gewünschte Adresse ein.

Via PC über RS 485-Lei-
tungWählen Sie im Gerätekatalog unter "Treiber" die Option "Modbus
Serial". Doppelklicken Sie diesen Treiber und bauen Sie ihn so in den
Projektbaum ein.

Gehen Sie auf den Gerätemanager Ihres PCs und ermitteln Sie, auf welcher COM-Schnittstelle der USB-/RS 485-Adapter liegt. Gehen Sie auf das Symbol "*Modbus COM.*" im Projektbaum. Wählen Sie mit der rechten Maustaste "*Parameter*" und starten Sie so den DTM für den USB-/RS 485-Adapter. Tragen Sie bei "*Grundeinstellung*" die COM-Schnittstellen-Nr. aus dem Gerätemanager ein.

Wählen Sie mit der rechten Maustaste "*Weitere Funktionen*" und "*Gerätesuche*". Der DTM sucht die angeschlossenen Modbusteilnehmer und baut sie in den Projektbaum ein. Gehen Sie im Projektbaum auf das Symbol für das Modbus-Gateway. Wählen Sie mit der rechten Maustaste "*Parameter*", dann "*Online-Parametrierung*" und starten Sie so den DTM für die Modbus-Elektronik.

Gehen Sie auf der Menüleiste des DTMs auf den Listpfeil neben dem Symbol für "Schraubenschlüssel". Wählen Sie den Menüpunkt "Adresse im Gerät ändern" und stellen Sie die gewünschte Adresse ein.

Gehen Sie danach wieder auf Symbol "*Modbus COM*." im Projektbaum. Wählen Sie mit der rechten Maustaste "*Weitere Funktionen*" und "*DTM-Adressen ändern*". Tragen Sie hier die geänderte Adresse des Modbus-Gateways ein.

Via Modbus-RTU Die Geräteadresse wird in der Register-Nr. 200 des Holding Registers eingestellt (siehe Kapitel "*Modbus-Register* " dieser Betriebsanleitung).

Die Vorgehensweise hängt von der jeweiligen Modbus-RTU und dem Konfigurationstool ab.

7.4 Parametrierdaten sichern

Es wird empfohlen, die Parametrierdaten über PACTware zu dokumentieren bzw. zu speichern. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

8 Messeinrichtung in Betrieb nehmen

8.1 Füllstandmessung

Geschlossener Behälter

Abb. 41: Bevorzugte Messanordnung für geschlossene Behälter

- I VEGADIF 85
- II 3-fach-Ventilblock
- III Abscheider
- 1, 5 Ablassventile
- 2, 4 Einlassventile
- 3 Ausgleichsventil
- 6, 7 Entlüftungsventile am VEGADIF 85
- A, BAbsperrventile

Gehen Sie wie folgt vor:

- 1. Behälter bis über die untere Anzapfung füllen
- 2. Messeinrichtung mit Medium füllen

Ventil 3 schließen: Hoch-/Niederdruckseite trennen

Ventile A und B öffnen: Absperrventile öffnen

3. Hochdruckseite entlüften (evtl. Niederdruckseite entleeren)

Ventile 2 und 4 öffnen: Medium auf Hochdruckseite einleiten

Ventile 6 und 7 kurz öffnen, danach wieder schließen: Hochdruckseite vollständig mit Medium füllen und Luft entfernen

4. Messstelle auf Messbetrieb setzen

Jetzt sind:

Ventile 3, 6 und 7 geschlossen Ventile 2, 4, A und B offen

53571-DE-230804

Geschlossener Behälter mit Dampfüberlagerung

Abb. 42: Bevorzugte Messanordnung für geschlossene Behälter mit Dampfüberlagerung

- I VEGADIF 85
- II 3-fach-Ventilblock
- III Abscheider
- IV Kondensatgefäß
- 1, 5 Ablassventile
- 2, 4 Einlassventile
- 3 Ausgleichsventil
- 6, 7 Entlüftungsventile am VEGADIF 85
- A, BAbsperrventile

Gehen Sie wie folgt vor:

- 1. Behälter bis über die untere Anzapfung füllen
- 2. Messeinrichtung mit Medium füllen

Ventile A und B öffnen: Absperrventile öffnen

Die Niederdruckwirkdruckleitung auf Höhe des Kondensatgefäßes befüllen

3. Gerät entlüften, hierzu:

Ventile 2 und 4 öffnen: Medium einleiten

Ventil 3 öffnen: Ausgleich Hoch- und Niederdruckseite

Ventile 6 und 7 kurz öffnen, danach wieder schließen: Messgerät vollständig mit Medium füllen und Luft entfernen

4. Messstelle auf Messbetrieb setzen, hierzu:

Ventil 3 schließen: Hoch- und Niederdruckseite trennen

Ventil 4 öffnen: Niederdruckseite anschließen

Jetzt sind:

Ventile 3, 6 und 7 geschlossen

Ventile 2, 4, A und B offen.

8.2 Durchflussmessung

Gase

- I VEGADIF 85
- II 3-fach-Ventilblock
- 2, 4 Einlassventile
- 3 Ausgleichsventil
- 6, 7 Entlüftungsventile am VEGADIF 85

Flüssigkeiten

Abb. 44: Bevorzugte Messanordnung für Flüssigkeiten

- I VEGADIF 85
- II 3-fach-Ventilblock
- III Abscheider
- 1, 5 Ablassventile
- 2, 4 Einlassventile
- 3 Ausgleichsventil
- 6, 7 Entlüftungsventile am VEGADIF 85
- A, BAbsperrventile

Gehen Sie wie folgt vor:

- 1. Ventil 3 schließen
- 2. Messeinrichtung mit Medium füllen.

Hierzu Ventile A, B (falls vorhanden) sowie 2, 4 öffnen: Medium strömt ein

Ggf. Wirkdruckleitungen reinigen: bei Gasen durch Ausblasen mit Druckluft, bei Flüssigkeiten durch Ausspülen.³⁾

Hierzu Ventile 2 und 4 schließen, damit Gerät absperren.

Danach Ventile 1 und 5 öffnen, damit die Wirkdruckleitungen ausblasen/ausspülen.

Nach der Reinigung Ventile 1 und 5 (falls vorhanden) schließen

3. Gerät entlüften, hierzu:

Ventile 2 und 4 öffnen: Medium strömt ein

Ventil 4 schließen: Niederdruckseite wird geschlossen

Ventil 3 öffnen: Ausgleich Hoch- und Niederdruckseite

Ventile 6 und 7 kurz öffnen, danach wieder schließen: Messgerät vollständig mit Medium füllen und Luft entfernen

 Lagekorrektur durchführen, wenn folgende Bedingungen zutreffen. Werden die Bedingungen nicht erfüllt, dann die Lagekorrektur erst nach Schritt 6 durchführen.

Bedingungen:

Der Prozess kann nicht abgesperrt werden.

Die Druckentnahmestellen (A und B) befinden sich auf gleicher geodätischer Höhe.

5. Messstelle auf Messbetrieb setzen, hierzu:

Ventil 3 schließen: Hoch- und Niederdruckseite trennen

Ventil 4 öffnen: Niederdruckseite anschließen

Jetzt sind:

Ventile 1, 3, 5, 6 und 7 geschlossen4)

Ventile 2 und 4 offen

Ventile A und B offen

 Lagekorrektur durchführen, wenn der Durchfluss abgesperrt werden kann. In diesem Fall entfällt Schritt 5.

- ³⁾ Bei Anordnung mit 5 Ventilen.
- ⁴⁾ Ventile 1, 3, 5: bei Anordnung mit 5 Ventilen.

9 Diagnose, Asset Management und Service

9.1 Instandhalten

Wartung	Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.		
Vorkehrungen gegen Anhaftungen	Bei manchen Anwendungen können Füllgutanhaftungen an der Mem- bran das Messergebnis beeinflussen. Treffen Sie deshalb je nach Sensor und Anwendung Vorkehrungen, um starke Anhaftungen und insbesondere Aushärtungen zu vermeiden.		
Reinigung	Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind.		
	Beachten Sie hierzu folgendes:		
	 Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen Nur Reinigungsmethoden einsetzen, die der Geräteschutzart extensionen 		
	ensprechen		
	9.2 Diagnosespeicher		
	Das Gerät verfügt über mehrere Speicher, die zu Diagnosezwecken zur Verfügung stehen. Die Daten bleiben auch bei Spannungsunter- brechung erhalten.		
Messwertspeicher	Bis zu 100.000 Messwerte können im Sensor in einem Ringspeicher gespeichert werden. Jeder Eintrag enthält Datum/Uhrzeit sowie den jeweiligen Messwert.		
	Speicherbare Werte sind je nach Geräteausführung z. B.:		
	Füllstand		
	Prozessdruck Differenzeruck		
	Statischer Druck		
	Prozentwert		
	Skalierte Werte Stromausgang		
	LinProzent		
	Messzellentemperatur Elektroniktemperatur		
	chert alle 10 s den Druckwert und die Messzellentemperatur, bei elektronischem Differenzdruck auch den statischen Druck.		
	Die gewünschten Werte und Aufzeichnungsbedingungen werden über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD festgelegt. Auf diesem Wege werden die Daten ausgelesen bzw. auch zurückgesetzt.		
Ereignisspeicher	Bis zu 500 Ereignisse werden mit Zeitstempel automatisch im Sensor nicht löschbar gespeichert. Jeder Eintrag enthält Datum/Uhrzeit,		

Ereignistyp, Ereignisbeschreibung und Wert.

Ereignistypen sind z. B.:

- Änderung eines Parameters
- Ein- und Ausschaltzeitpunkte
- Statusmeldungen (nach NE 107)
- Fehlermeldungen (nach NE 107)

Über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD werden die Daten ausgelesen.

9.3 Asset-Management-Funktion

Das Gerät verfügt über eine Selbstüberwachung und Diagnose nach NE 107 und VDI/VDE 2650. Zu den in den folgenden Tabellen angegebenen Statusmeldungen sind detailliertere Fehlermeldungen unter dem Menüpunkt "*Diagnose*" über das jeweilige Bedientool ersichtlich.

Statusmeldungen

Die Statusmeldungen sind in folgende Kategorien unterteilt:

- Ausfall
- Funktionskontrolle
- Außerhalb der Spezifikation
- Wartungsbedarf

und durch Piktogramme verdeutlicht:

Abb. 45: Piktogramme der Statusmeldungen

- 1 Ausfall (Failure) rot
- 2 Außerhalb der Spezifikation (Out of specification) gelb
- 3 Funktionskontrolle (Function check) orange
- 4 Wartungsbedarf (Maintenance) blau

Ausfall (Failure):

Aufgrund einer erkannten Funktionsstörung im Gerät gibt das Gerät ein Ausfallsignal aus.

Diese Statusmeldung ist immer aktiv. Eine Deaktivierung durch den Anwender ist nicht möglich.

Funktionskontrolle (Function check):

Am Gerät wird gearbeitet, der Messwert ist vorübergehend ungültig (z. B. während der Simulation).

Diese Statusmeldung ist per Default inaktiv.

Außerhalb der Spezifikation (Out of specification):

Der Messwert ist unsicher, da die Gerätespezifikation überschritten ist (z. B. Elektroniktemperatur).

Diese Statusmeldung ist per Default inaktiv.

Wartungsbedarf (Maintenance):

Durch externe Einflüsse ist die Gerätefunktion eingeschränkt. Die Messung wird beeinflusst, der Messwert ist noch gültig. Gerät zur Wartung einplanen, da Ausfall in absehbarer Zeit zu erwarten ist (z. B. durch Anhaftungen).

Diese Statusmeldung ist per Default inaktiv.

Failure

Code	Ursache	Beseitigung	DevSpec	
Textmeldung			State in CMD 48	
F013	Überdruck oder Unterdruck	Messzelle austauschen	Byte 5, Bit 0 von	
Kein gültiger Messwert vorhanden	Messzelle defekt	Gerät zur Reparatur einsenden	Byte 0 5	
F017	Abgleich nicht innerhalb der	Abgleich entsprechend den	Byte 5, Bit 1 von	
Abgleichspanne zu klein	Spezifikation	Grenzwerten ändern	Byte 0 5	
F025	Stützstellen sind nicht stetig	Linearisierungstabelle prüfen	Byte 5, Bit 2 von	
Fehler in der Linearisie- rungstabelle	steigend, z. B. unlogische Wer- tepaare	Tabelle löschen/neu anlegen	Byte 0 5	
F036	Fehlgeschlagenes oder abge-	Softwareupdate wiederholen	Byte 5, Bit 3 von	
Keine lauffähige Sen-	brochenes Softwareupdate	Elektronikausführung prüfen	Byte 0 5	
sorsoftware		Elektronik austauschen		
		Gerät zur Reparatur einsenden		
F040	Hardwaredefekt	Elektronik austauschen	Byte 5, Bit 4 von	
Fehler in der Elektronik		Gerät zur Reparatur einsenden	Byte 0 5	
F041	Keine Verbindung zur Sensor- elektronik	Verbindung zwischen Sensor-	-	
Kommunikationsfehler		und Hauptelektronik überprüfen (bei separater Ausführung)		
F080	Allgemeiner Softwarefehler	Betriebsspannung kurzzeitig	Byte 5, Bit 5 von	
Allgemeiner Soft- warefehler		trennen	Byte 0 5	
F105	Gerät befindet sich noch in der	Ende der Einschaltphase ab-	Byte 5, Bit 6 von	
Messwert wird ermittelt	Einschaltphase, der Messwert konnte noch nicht ermittelt wer- den	warten	Byte 0 5	
F113	Fehler in der internen Geräte-	Betriebsspannung kurzzeitig	Byte 4, Bit 4 von	
Kommunikationsfehler	kommunikation	trennen	Byte 0 5	
		Gerät zur Reparatur einsenden		
F260	Fehler in der im Werk durchge-	Elektronik austauschen	Byte 4, Bit 0 von	
Fehler in der Kalibrie-		Gerät zur Reparatur einsenden	Dyte 0 5	
		Inhatrichnahma wiadarh-I	Dute 4 Dit 1 vr	
F201	Fehler bei der Inbetriebnahme Inbetriebnahme wiederholen		Byte 0 5	
stellung	Resets		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
F264 Einbau-/Inbetriebnah- mefehler	Inkonsistente Einstel- lungen (z. B.: Distanz, Abgleicheinheiten bei An- wendung Prozessdruck) für ausgewählte Anwendung Ungültige Sensor-Konfigu- ration (z. B.: Anwendung elektronischer Differenzdruck mit angeschlossener Differenz- druckmesszelle)	Einstellungen ändern Angeschlossene Sensorkonfigu- ration oder Anwendung ändern	Byte 4, Bit 2 von Byte 0 5
F265 Messfunktion gestört	Sensor führt keine Messung mehr durch	Reset durchführen Betriebsspannung kurzzeitig trennen	Byte 4, Bit 3 von Byte 0 5

Tab. 7: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Function check

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
C700	Eine Simulation ist aktiv	Simulation beenden	"Simulation Active"
Simulation aktiv		Automatisches Ende nach 60 Minuten abwarten	in "Standardized Status 0"

Tab. 8: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Out of specification

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
S600 Unzulässige Elektronik- temperatur	Temperatur der Elektronik im nicht spezifizierten Bereich	Umgebungstemperatur prüfen Elektronik isolieren	Byte 23, Bit 0 von Byte 14 24
S603 Unzulässige Betriebs- spannung	Betriebsspannung unterhalb des spezifizierten Bereichs	Elektrischen Anschluss prüfen Ggf. Betriebsspannung erhöhen	-
S605 Unzulässiger Druckwert	Gemessener Prozessdruck unterhalb bzw. oberhalb des Einstellbereiches	Nennmessbereich des Gerä- tes prüfen Ggf. Gerät mit höherem Mess- bereich einsetzen	-

Maintenance

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
M500	Beim Reset auf Auslieferungs-	Reset wiederholen	Bit 0 von
Fehler im Ausliefe- rungszustand	zustand konnten die Daten nicht wiederhergestellt werden	XML-Datei mit Sensordaten in Sensor laden	Byte 14 24

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
M501 Fehler in der nicht aktiven Linearisierungs- tabelle	Stützstellen sind nicht stetig steigend, z. B. unlogische Wer- tepaare	Linearisierungstabelle prüfen Tabelle löschen/neu anlegen	Bit 1 von Byte 14 … 24
M502 Fehler im Ereignisspei- cher	Hardwarefehler EEPROM	Elektronik austauschen Gerät zur Reparatur einsenden	Bit 2 von Byte 14 24
M504 Fehler an einer Geräte- schnittstelle	Hardwaredefekt	Elektronik austauschen Gerät zur Reparatur einsenden	Bit 3 von Byte 14 24
M507 Fehler in der Geräteein- stellung	Fehler bei der Inbetriebnahme Fehler beim Ausführen eines Resets	Reset durchführen und Inbe- triebnahme wiederholen	Bit 4 von Byte 14 24

9.4 Störungen beseitigen

Verhalten bei Störungen Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen. Störungsbeseitigung Die ersten Maßnahmen sind: Auswertung von Fehlermeldungen • Überprüfung des Ausgangssignals Behandlung von Messfehlern Weitere umfassende Diagnosemöglichkeiten bieten Ihnen ein Smartphone/Tablet mit der Bedien-App bzw. ein PC/Notebook mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitiaen. Verhalten nach Störungs-Je nach Störungsursache und getroffenen Maßnahmen sind ggf. beseitigung die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen. 24 Stunden Service-Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, Hotline rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550 Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung. Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an. Prozessflansche tauschen 9.5 Die Prozessflansche können bei Bedarf vom Anwender durch einen identischen Typ ersetzt werden.

Vorbereitungen

Erforderliche Ersatzteile, je nach Bestellspezifikation:

- Prozessflansche
- Dichtungen
- Schrauben, Muttern

Erforderliches Werkzeug:

• Schraubenschlüsssel SW 13

Es wird empfohlen, die Arbeiten auf einer sauberen, ebenen Fläche, z. B. Werkbank durchzuführen.

Vorsicht:

Es besteht Verletzungsgefahr durch Rückstände von Prozessmedien in den Prozessflanschen. Treffen Sie dagegen geeignete Schutzmaßnahmen.

Demontage

Gehen Sie wie folgt vor:

- 1. Sechskantschrauben mit Schraubenschlüsssel über Kreuz lösen
- 2. Prozessflansche vorsichtig abnehmen, dabei Differenzdruckmesszelle nicht beschädigen
- 3. O-Ring-Dichtungen mit spitzem Werkzeug aus den Nuten der Prozessflansche herausheben
- 4. O-Ring-Nuten und Trennmembranen mit geeignetem Reiniger und weichem Tuch reinigen

Hinweis:

Zusätzliche Reinigung bei öl- und fettfreier Ausführung beachten

Montage

Gehen Sie wie folgt vor:

- 1. Neue, unbeschädigte O-Ring-Dichtungen in die Nuten einlegen, auf richtigen Sitz prüfen
- 2. Prozessflansche vorsichtig an die Differenzdruckmesszelle montieren, Dichtung muss dabei in der Nut bleiben
- 3. Unversehrte Schrauben und Muttern einsetzen, über Kreuz zusammenschrauben
- 4. Zunächst mit 8 Nm anziehen, dann mit 12 Nm nachziehen
- 5. Final mit 16 Nm bei 160 bar, 18 Nm bei 400 bar, 22 Nm bei Kupferdichtungen festziehen.

Der Tausch der Prozessflansche ist damit abgeschlossen.

Hinweis:

Führen Sie nach dem Einbau des Gerätes in die Messstelle erneut eine Lagekorrektur durch.

9.6 Prozessbaugruppe bei Ausführung IP68 (25 bar) tauschen

Bei der Ausführung IP68 (25 bar) kann der Anwender die Prozessbaugruppe vor Ort tauschen. Anschlusskabel und externes Gehäuse können beibehalten werden.

Erforderliches Werkzeug:

• Innensechskantschlüssel, Größe 2

Vorsicht:

Der Austausch darf nur im spannungsfreien Zustand erfolgen.

Vorsicht:

Beim Austausch die Innenseite der Teile vor Schmutz und Feuchtigkeit schützen.

Bei Ex-Anwendungen darf nur ein Austauschteil mit entsprechender

Gehen Sie zum Tausch wie folgt vor:

Ex-Zulassung eingesetzt werden.

- 1. Fixierschraube mit Innensechskantschlüssel lösen
- 2. Kabelbaugruppe vorsichtig von der Prozessbaugruppe abziehen

Abb. 46: VEGADIF 85 in IP68-Ausführung 25 bar und seitlichem Kabelabgang, externes Gehäuse

- 1 Prozessbaugruppe
- 2 Steckverbinder
- 3 Fixierschraube
- 4 Kabelbaugruppe
- 5 Anschlusskabel
- 6 Externes Gehäuse
- 3. Steckverbinder lösen
- 4. Neue Prozessbaugruppe an die Messstelle montieren
- 5. Steckverbinder wieder zusammenfügen
- 6. Kabelbaugruppe auf Prozessbaugruppe stecken und in gewünschte Position drehen
- 7. Fixierschraube mit Innensechskantschlüssel festdrehen

Der Austausch ist damit abgeschlossen.

Die dazu erforderliche Seriennummer finden Sie auf dem Typschild des Gerätes oder auf dem Lieferschein.

9.7 Elektronikeinsatz tauschen

Der Elektronikeinsatz kann bei einem Defekt vom Anwender gegen einen identischen Typ getauscht werden.

Bei Ex-Anwendungen darf nur ein Gerät und ein Elektronikeinsatz mit entsprechender Ex-Zulassung eingesetzt werden.

Detaillierte Informationen zum Elektroniktausch finden Sie in der Betriebsanleitung zum Elektronikeinsatz.

9.8 Softwareupdate

Zum Update der Gerätesoftware sind folgende Komponenten erforderlich:

- Gerät
- Spannungsversorgung
- Schnittstellenadapter VEGACONNECT
- PC mit PACTware
- Aktuelle Gerätesoftware als Datei

Die aktuelle Gerätesoftware sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf <u>www.vega.com</u>.

Die Informationen zur Installation sind in der Downloaddatei enthalten.

Vorsicht:

Geräte mit Zulassungen können an bestimmte Softwarestände gebunden sein. Stellen Sie deshalb sicher, dass bei einem Softwareupdate die Zulassung wirksam bleibt.

Detallierte Informationen finden Sie im Downloadbereich auf www.vega.com.

9.9 Vorgehen im Reparaturfall

Auf unserer Homepage finden Sie detaillierte Informationen zur Vorgehensweise im Reparaturfall.

Damit wir die Reparatur schnell und ohne Rückfragen durchführen können, generieren Sie dort mit den Daten Ihres Gerätes ein Geräterücksendeblatt.

Sie benötigen dazu:

- Die Seriennummer des Gerätes
- Eine kurze Beschreibung des Problems
- Angaben zum Medium

Das generierte Geräterücksendeblatt ausdrucken.

Das Gerät reinigen und bruchsicher verpacken.

Das ausgedruckte Geräterücksendeblatt und eventuell ein Sicherheitsdatenblatt zusammen mit dem Gerät versenden.

Die Adresse für die Rücksendung finden Sie auf dem generierten Geräterücksendeblatt.

10 Ausbauen

10.1 Ausbauschritte

Führen Sie zum Ausbau des Gerätes die Schritte der Kapitel "*Montieren*" und "*An die Spannungsversorgung anschließen*" sinngemäß umgekehrt durch.

Warnung:

Achten Sie beim Ausbau auf die Prozessbedingungen in Behältern oder Rohrleitungen. Es besteht Verletzungsgefahr z. B. durch hohe Drücke oder Temperaturen sowie aggressive oder toxische Medien. Vermeiden Sie dies durch entsprechende Schutzmaßnahmen.

10.2 Entsorgen

Führen Sie das Gerät einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Entfernen Sie zuvor eventuell vorhandene Batterien, sofern sie aus dem Gerät entnommen werden können und führen Sie diese einer getrennten Erfassung zu.

Sollten personenbezogene Daten auf dem zu entsorgenden Altgerät gespeichert sein, löschen Sie diese vor der Entsorgung.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

11 Anhang

11.1 Technische Daten

Hinweis für zugelassene Geräte

Für zugelassene Geräte (z. B. mit Ex-Zulassung) gelten die technischen Daten in den entsprechenden Sicherheitshinweisen im Lieferumfang. Diese können, z. B. bei den Prozessbedingungen oder der Spannungsversorgung, von den hier aufgeführten Daten abweichen.

Alle Zulassungsdokumente können über unsere Homepage heruntergeladen werden.

Werkstoffe und Gewichte	
Werkstoff 316L entspricht Edelstahl 1.440	04 oder 1.4435
Werkstoffe, medienberührt	
 Prozessanschluss, Seitenflansche 	316L, Alloy C276 (2.4819), Superduplex (1.4410)
- Trennmembran	316L, Alloy C276 (2.4819), 316L/1.4404 6 μm Gold beschichtet
 Dichtung 	FKM (ERIKS 514531), EPDM (ERIKS 55914)
 Dichtung bei Druckmittleranbau 	Kupferdichtring
- Verschlussschrauben	316L
 Entlüftungsventile 	316L
Druckmittlerflüssigkeit	
 Standardanwendungen 	Silikonöl
 Sauerstoffanwendungen 	Halocarbonöl ⁵⁾
Werkstoffe, nicht medienberührt	
- Elektronikgehäuse	Kunststoff PBT (Polyester), Aluminium-Druckguss pulverbeschichtet, 316L
 Kabelverschraubung 	PA, Edelstahl, Messing
 Dichtung Kabelverschraubung 	NBR
 Verschlussstopfen Kabelverschrau- bung 	PA
 Externes Gehäuse 	Kunststoff PBT (Polyester), 316L
 Sockel, Wandmontageplatte externes Elektronikgehäuse 	Kunststoff PBT (Polyester), 316L
 Dichtung zwischen Gehäusesockel und Wandmontageplatte 	TPE (fest verbunden)
 Dichtung Gehäusedeckel 	Silikon SI 850 R, NBR silikonfrei
 Sichtfenster Gehäusedeckel 	Polycarbonat (UL746-C gelistet), Glas ⁶⁾
 Schrauben und Muttern f ür Seiten- flansche 	PN 160 und PN 400: Sechskantschraube DIN 931 M8 x 85 A4-70 (1.4404/316L), Sechskantmutter DIN 934 M8 A4-70 (1.4404/316L)
 Erdungsklemme 	316Ti/316L

FΓGΔ

⁵⁾ Abweichende Prozesstemperaturgrenzen beachten

6) Glas bei Aluminium- und Edelstahl Feingussgehäuse

 Verbindungskabel zwischen IP68- Messwertaufnehmer und externem Elektronikgehäuse 	PE, PUR
 Typschildträger bei IP68-Version auf Kabel 	PE-hart
Gewicht	ca. 4,2 4,5 kg (9.26 9.92 lbs), je nach Prozessan- schluss
Max. Anzugsmomente	
Befestigungsmuttern Bügel für Monta- gewinkel	30 Nm (22.13 lbf ft)
Montageschrauben für Ovalflanschad- apter, Ventilblock und Montagewinkel an der Prozessbaugruppe	25 Nm (18.44 lbf ft)
Entlüftungsventile, Verschlussschrau- ben ⁷⁾	18 Nm (13.28 lbf ft)
Montageschrauben für Prozessbaugrupp	e
– 160 bar	16 Nm (11.80 lbf ft)
– 400 bar	18 Nm (13.28 lbf ft)
Sockelschrauben externes Gehäuse	5 Nm (3.688 lbf ft)
NPT-Kabelverschraubungen und Conduit	t-Rohre
 Kunststoffgehäuse 	10 Nm (7.376 lbf ft)
 Aluminium-/Edelstahlgehäuse 	50 Nm (36.88 lbf ft)

Eingangsgröße

Messbereiche in b	ar
-------------------	----

Messbereich	Nennmessbereich	Maximaler Abgleichbereich
10 mbar	-10 mbar +10 mbar	-12 mbar +12 mbar
30 mbar	-30 mbar +30 mbar	-36 mbar +36 mbar
100 mbar	-100 mbar +100 mbar	-120 mbar +120 mbar
500 mbar	-500 mbar +500 mbar	-600 mbar +600 mbar
3 bar	-3 bar +3 bar	-3,6 bar +3,6 bar
16 bar	-16 bar +16 bar	-19,2 bar +19,2 bar
40 bar	-40 bar +40 bar	-48 bar +48 bar

Messbereiche in psi

Messbereich	Nennmessbereich	Maximaler Abgleichbereich
0.15 psig	-0.15 psig +0.15 psig	-0.18 psig +0.18 psig
0.45 psig	0.45 psig +0.45 psig	-0.54 psig +-0.54 psig
1.5 psig	-1.5 psig +1.5 psig	-1.8 psig +1.8 psig
7.5 psig	-7.5 psig +7.5 psig	-9 psig +9 psig

7) 4 Lagen PTFE

Messbereich	Nennmessbereich	Maximaler Abgleichbereich
45 psig	-45 psig +45 psig	-5.4 psig +5.4 psig
240 psig	-240 psig +240 psig	-288 psig +288 psig
580 psig	-580 psig +580 psig	-696 psig +696 psig

Messbereiche in kPa

Messbereich	Nennmessbereich	Maximaler Abgleichbereich
1 kPa	-1 kPa +1 kPa	-1,2 kPa +1,2 kPa
3 kPa	-3 kPa +3 kPa	-3,6 kPa +3,6 kPa
10 kPa	-10 kPa +10 kPa	-12 kPa +12 kPa
50 kPa	-50 kPa +50 kPa	-60 kPa +60 kPa
300 kPa	-300 kPa +300 kPa	-360 kPa +360 kPa
1600 kPa	-1600 kPa +1600 kPa	-1920 kPa +1920 kPa
4000 kPa	-4000 kPa +4000 kPa	-4800 kPa +4800 kPa

Turn Down

Maximal zulässiger Turn Down

Unbegrenzt (empfohlen bis 20 : 1)

Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Einschaltphase	
Hochlaufzeit ca.	23 s
Ausgangsgröße	
Ausgang	
 Physikalische Schicht 	Digitales Ausgangssignal nach Standard EIA-485
- Buspezifikationen	Modbus Application Protocol V1.1b3, Modbus over serial line V1.02
 Datenprotokolle 	Modbus RTU, Modbus ASCII, Levelmaster
Max. Übertragungsrate	57,6 Kbit/s

Zusätzliche Ausgangsgröße - Messzellentemperatur		
Bereich	-40 +85 °C (-40 +185 °F)	
Messzellentemperatur		
 Auflösung 	1 K	
 Messabweichung 	±1 K	
Ausgabe der Temperaturwerte		
– Anzeige	Über das Anzeige- und Bedienmodul	
- Analog	Über den Stromausgang, den zusätzlichen Stromaus- gang	
- Digital	Über das digitale Ausgangssignal (je nach Elektroni- kausführung)	

Referenzbedingungen und Einflussgrößen (nach DIN EN 60770-1)

Referenzbedingungen nach DIN EN 61298-1

- Temperatur	+18 +30 °C (+64 +86 °F)
 Relative Luftfeuchte 	45 75 %
- Luftdruck	860 1060 mbar/86 106 kPa (12.5 15.4 psig)
Kennlinienbestimmung	Grenzpunkteinstellung nach IEC 61298-2
Kennliniencharakteristik	Linear
Kalibrationslage der Messzelle	Senkrecht, d. h. stehende Prozessbaugruppe
Einfluss der Einbaulage	<0,35 mbar/20 Pa (0.003 psig) je 10° Neigung um die Querachse
Material Seitenflansche	316L

Abweichung am Stromausgang durch starke, hochfrequente elektromagnetische Felder

- Im Rahmen der EN 61326-1 <±80 μA
- Im Rahmen der IACS E10 (Schiffbau)/ <= ±160 μA IEC 60945

Messabweichung ermittelt nach der Grenzpunktmethode nach IEC 60770 bzw. IEC 61298

Die Messabweichung beinhaltet die Nichtlinearität, Hysterese und Nichtwiederholbarkeit.

Die Werte gelten für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang. Sie beziehen sich beim Differenzdruck auf die eingestellte Messspanne, beim statischen Druck auf den Messbereichsendwert. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Differenzdruck

Messbereich	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1	
10 mbar (1 kPa)/0.145 psi				
30 mbar (3 kPa)/0.44 psi	< ±0,1 %		< ±0,02 % X I D	
100 mbar (10 kPa)/1.5 psi	< ±0,065 %		< ±0,035 % + 0,01 % x TD	
500 mbar (50 kPa)/7.3 psi				
3 bar (300 kPa)/43.51 psi			< ±0,015 % + 0,005 % x TD	
16 bar (1600 kPa)/232.1 psi			< ±0,035 % + 0,01 % x TD	

Statischer Druck

Messbereich	Bis Nenndruck ⁸⁾	TD 1:1
10 mbar (1 kPa)/0.145 psi	10 hor (1000 kBa)	
30 mbar (3 kPa)/0.44 psi	40 Dai (4000 KFa)	< ±0,1 %
100 mbar (10 kPa)/1.5 psi	160 bar (16000 kPa) bzw. 400 bar (40000 kPa)	
500 mbar (50 kPa)/7.3 psi		
3 bar (300 kPa)/43.51 psi		
16 bar (1600 kPa)/232.1 psi		

8) Messbereichsendwert Absolutdruck

Durchfluss > 50 %⁹⁾

Messbereich	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1
10 mbar (1 kPa)/0.145 psi	- 10.1.9/		
30 mbar (3 kPa)/0.44 psi	< ±0,1 % <		< ±0,02 % X TD
100 mbar (10 kPa)/1.5 psi	< ±0,065 %		< ±0,035 % + 0,01 % x TD
500 mbar (50 kPa)/7.3 psi			< ±0,015 % + 0,005 % x TD
3 bar (300 kPa)/43.51 psi			
16 bar (1600 kPa)/232.1 psi			< ±0,035 % + 0,01 % x TD

25 % < Durchfluss \leq 50 %¹⁰⁾

Messbereich	TD ≤ 5 : 1	TD > 5 : 1	TD > 10 : 1
10 mbar (1 kPa)/0.145 psi	< 10.0 %		
30 mbar (3 kPa)/0.44 psi	< ±0,2 %		< ±0,04 % X 1D
100 mbar (10 kPa)/1.5 psi	<pre></pre>		< ±0,07 % + 0,02 % x TD
500 mbar (50 kPa)/7.3 psi			< ±0,03 % + 0,01 % x TD
3 bar (300 kPa)/43.51 psi			
16 bar (1600 kPa)/232.1 psi			< ±0,07 % + 0,02 % x TD

Einfluss der Medium- bzw. Umgebungstemperatur

Gilt für Geräte in Basisausführung mit **digitalem** Signalausgang. Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) = Nennmessbereich/eingestellte Messspanne.

Thermische Änderung Nullsignal und Ausgangsspanne Differenzdruck¹¹⁾

Messbereich	-10 +60 °C / +14 +140 °F	-4010 °C / -40 +14 °F und +60 +85 °C /+140 +185 °F	
10 mbar (1 kPa)/0.145 psi	< ±0,15 % + 0,20 % x TD	< ±0,4 % + 0,3 % x TD	
30 mbar (3 kPa)/0.44 psi	< ±0,15 % + 0,10 % x TD	< ±0,2 % + 0,15 % x TD	
100 mbar (10 kPa)/1.5 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD	
500 mbar (50 kPa)/7.3 psi		< ±0,2 % + 0,06 % x TD	
3 bar (300 kPa)/43.51 psi	< ±0,15 % + 0,05 % X 1D		
16 bar (1600 kPa)/232.1 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD	

Thermische Änderung Nullsignal und Ausgangsspanne statischer Druck¹²⁾

⁹⁾ Radizierte Kennlinie

- ¹⁰⁾ Radizierte Kennlinie
- ¹¹⁾ Bezogen auf die eingestellte Messspanne.

¹²⁾ Bezogen auf den Messbereichsendwert.

Messbereich	Bis Nenndruck ¹³⁾	-40 +80 °C / -40 +176 °F
10 mbar (1 kPa)/0.145 psi	10 hor (1000 kBa)	
30 mbar (3 kPa)/0.44 psi	40 bar (4000 KPa)	
100 mbar (10 kPa)/1.5 psi		
500 mbar (50 kPa)/7.3 psi	160 bar (16000 kPa)	< ±0,5 %
3 bar (300 kPa)/43.51 psi	DZW. 400 bar (40000 kPa)	
16 bar (1600 kPa)/232.1 psi		

Einfluss des statischen Druckes

Die Werte gelten für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang und beziehen sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Änderung Nullsignal und Ausgangsspanne

Nennmessbereich	Bis Nenndruck ¹⁴⁾	Einfluss auf den Null- punkt	Einfluss auf die Spanne	
10 mbar (1 kPa), (0.145 psi)	40 bar (4000 kPa),	< ±0,10 % x TD	< ±0,10 %	
30 mbar (3 kPa), (0.44 psi)	(000 psi)			
100 mbar (10 kPa), (1.5 psi)		160 bar (16000 kPa),	160 bar(16000 kPa),	
500 mbar (50 kPa),	160 bar (16000 kPa),	(2400 psi):	(2400 psi):	
(7.3 psi)	(2400 psi)	< ±0,10 % x TD	< ±0,10 %	
3 bar (300 kPa), (43.51 psi)	400 bar (4000 kPa), (5800 psi)	400 bar(4000 kPa), (5800 psi):	400 bar(4000 kPa), (5800 psi):	
16 bar (1600 kPa), (232.1 psi)		≤ 0,25 % x TD	≤ 0,25 %	

Langzeitstabilität (gemäß DIN 16086)

Gilt für den jeweiligen **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie für den **analogen** 4 ... 20 mA-Stromausgang unter Referenzbedingungen. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Die Langzeitstabilität des Nullsignals und der Ausgangsspanne entspricht dem Wert F_{Stab} in Kapitel "Berechnung der Gesamtabweichung (nach DIN 16086)".

Langzeitstabilität Nullsignal und Ausgangsspanne

Maaaguäßa	Zeitbereich			
Messgrobe	1 Jahr	5 Jahre	10 Jahre	
Differenzdruck ¹⁵⁾	< 0,065 % x TD	< 0,1 % x TD	< 0,15 % x TD	
Statischer Druck ¹⁶⁾	< ±0,065 %	< ±0,1 %	< ±0,15 %	

- ¹³⁾ Messbereichsendwert Absolutdruck.
- ¹⁴⁾ Messbereichsendwert Absolutdruck.
- ¹⁵⁾ Bezogen auf die eingestellte Messspanne.
- ¹⁶⁾ Bezogen auf den Messbereichsendwert.

Prozessbedingungen

Prozesstemperatur¹⁷⁾

Werkstoff Dichtung	Füllöl	Temperaturgrenzen
FKM (ERIKS 514531)	Silikonöl	-20 +105 °C (-4 +221 °F)
	Halocarbonöl für Sauerstoffanwen- dung	-10 +60 °C (-4 +140 °F)
PTFE	Silikonöl	-40 +105 °C (-40 +221 °F)
	Halocarbonöl für Sauerstoffanwen- dung	-10 +60 °C (-4 +140 °F)
Kupfer	Silikonöl	-40 +105 °C (-40 +221 °F)
	Halocarbonöl für Sauerstoffanwen- dung	-10 +60 °C (-4 +140 °F)
EPDM (ERIKS 55914)	Silikonöl	-40 +105 °C (-40 +221 °F)
	Halocarbonöl für Sauerstoffanwen- dung	-10 +60 °C (-4 +140 °F)

Prozessdruck18)

Nennmessbereich	Max. zulässi- ger Prozessdruck (MWP)	Überlast einseitig (OPL)	Überlast beidseitig (OPL)	Min. zulässiger sta- tischer Druck
10 mbar (1 kPa)	40 bar (4000 kPa)	40 bor (4000 kPa)	60 bor (6000 kBo)	
30 mbar (3 kPa)	40 Dai (4000 KFa)	40 Dai (4000 KFa)	00 Dai (0000 KFa)	
100 mbar (10 kPa)	160 bar (16000 kPa)	160 bar (16000 kPa)	240 bar (24000 kPa)	1 mbor (100 Po)
500 mbar (50 kPa)				TINDAI _{abs} (TOO Fa _{abs})
3 bar (300 kPa)	160 bar (16000 kPa)	160 bar (16000 kPa)	240 bar (24000 kPa)	
16 bar (1600 kPa)	400 Dai (40000 KFa)	400 Dai (40000 KFa)	030 Dai (03000 KFA)	

Nennmessbereich	Max. zulässi- ger Prozessdruck (MWP)	Überlast einseitig (OPL)	Überlast beidseitig (OPL)	Min. zulässiger sta- tischer Druck
0.15 psig	590 1 paig	590 1 poig	970 0 poig	
0.45 psig	560. i psig	560.1 psig	870.2 psig	
1.5 psig	2320 psig	2320 psig	3481 psig	0.015 mai
7.5 psig				0.015 psi
45 psig	2320 psig	2320 psig	3481 psig	
240 psig	- 580≥ psig	5802 psig	a 137 beig	

Mechanische Beanspruchung

- ¹⁷⁾ Bei Eintritt in den Prozessanschluss, Anschluss über Ventilblock, kurzzeitige Entlüftung, kein dauerhaftes Durchströmen der Messkammern
- $^{\rm 18)}$ Referenztemperatur +25 °C (+77 °F).

Vibrationsfestigkeit	4 g bei 5 200 Hz nach EN 60068-2-6 (Vibration bei Resonanz)
Schockfestigkeit	50 g, 2,3 ms nach EN 60068-2-27 (mechanischer Schock) ¹⁹⁾

Umgebungsbedingungen

Ausführung	Umgebungstemperatur	Lager- und Transporttemperatur
Standardausführung	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Ausführung IP66/IP68 (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Ausführung IP68 (25 bar), Anschluss- kabel PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Ausführung IP68 (25 bar), Anschluss- kabel PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Elektromechanische Daten - Ausführung IP66/IP67 und IP66/IP68 (0,2 bar)²⁰⁾

Optionen der Kabeleinführung

- Kabeleinführung
- Kabelverschraubung
- Blindstopfen
- Verschlusskappe

M20 x 1,5; ½ NPT M20 x 1,5; ½ NPT (Kabel-ø siehe Tabelle unten) M20 x 1,5; ½ NPT ½ NPT

Werkstoff Kabelverschraubung/	Kabeldurchmesser				
Dichtungseinsatz	5 9 mm	6 12 mm	7 12 mm	10 14 mm	
PA/NBR	√	√	-	√	
Messing, vernickelt/NBR	√	√	-	-	
Edelstahl/NBR	-	-	√	-	

Aderquerschnitt (Federkraftklemmen)

- Massiver Draht, Litze
- Litze mit Aderendhülse
- 0,2 ... 2,5 mm² (AWG 24 ... 14) 0,2 ... 1,5 mm² (AWG 24 ... 16)

Elektromechanische Daten - Ausführung IP68 (25 bar)

Verbindungskabel, mechanische Daten

- Aufbau	Adern, Zugentlastung, Druckausgleichskapillare, Schirmgeflecht, Metallfolie, Mantel
 Standardlänge 	5 m (16.40 ft)
– Max. Länge	50 m (164.0 ft)
 Min. Biegeradius (bei 25 °C/77 °F) 	25 mm (0.985 in)
- Durchmesser	ca. 8 mm (0.315 in)
- Farbe PE	Schwarz
- Farbe PUR	Blau

¹⁹⁾ 2 g bei Gehäuseausführung Edelstahl-Zweikammer

²⁰⁾ IP66/IP68 (0,2 bar) nur bei Absolutdruck.

53571-DE-230804

Verbindungskabel,	elektrische Daten
-------------------	-------------------

 Aderquerschnitt 	0,5 mm² (AWG 20)
 Aderwiderstand R² 	0.037 Ω/m (0.012 Ω/ft)

Schnittstelle zur externen Anzeige- und Bedieneinheit

Datenübertragung	Digital (I ² C-Bus)				
Verbindungsleitung		Vieradrig			
Sensorausführung	Aufbau Verbindungsleitung			tung	
	Leitungs	länge	Standardleitung	Abgeschirmt	
4 20 mA/HART		E0 m			
Modbus		50 m	•	-	
Profibus PA, Foundation Fieldbus		25 m	-	•	
Integrierte Uhr					
Datumsformat		Tag.Monat.	lahr		
Zeitformat		12 h/24 h			
Zeitzone werkseitig		CET			
Max. Gangabweichung		10,5 min/Ja	hr		
Zusätzliche Ausgangsgröße	- Elektro	niktemperati	ır		
Bereich	2101110	-40 +85 °	C (-40 +185 °F)		
Auflösung		< 0,1 K			
Messabweichung		± 3 K			
Verfügbarkeit der Temperaturwerte					
- Anzeige		Über das Ar	zeige- und Bedienm	odul	
- Ausgabe		Über das jev	weilige Ausgangssig	nal	
Spannungsversorgung					
Betriebsspannung		8 30 V D	0		
Max. Leistungsaufnahme		520 mW			
Verpolungsschutz		Integriert			
Potenzialverbindungen und e	elektrisch	ne Trennmaß	nahmen im Gerät		
Elektronik		Nicht poten:	zialgebunden		
Galvanische Trennung			-		
 zwischen Elektronik und met Geräteteilen 	etallischen Bemessungsspannung 500 V AC				
 zwischen Spannungsversorg Modbus-Kommunikationsleit 	jung und ungen	Ind Bemessungsspannung 500 V AC			
Leitende Verbindung		Zwischen Erdungsklemme und metallischem Prozess- anschluss			

Elektrische Schutzmaßnahmen

Gehäusewerkstoff	Ausführung	Schutzart nach IEC 60529	Schutzart nach NEMA
Kunststoff		IP66/IP67	Type 4x
Aluminium	Zweikammer	IP66/IP68 (0,2 bar)	Туре 6Р
Edelstahl, Feinguss			
Edelstahl (Messwertaufnehmer bei Ausführung mit externem Gehäuse)		IP68 (25 bar)	-

Anschluss des speisenden Netzteils Netze der Überspannungskategorie III

Einsatzhöhe über Meeresspiegel - standardmäßig bis 2000 m (6562 ft) - mit vorgeschaltetem Überspannungsschutz Verschmutzungsgrad²¹⁾ 4 Schutzklasse (IEC 61010-1) II

11.2 Gerätekommunikation Modbus

Im Folgenden werden die erforderlichen, gerätespezifischen Details dargestellt. Weitere Informationen zum Modbus finden Sie auf <u>www.modbus.org</u>.

Parameter für die Buskommunikation

Der VEGADIF 85 ist mit folgenden Defaultwerten vorbelegt:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1,2	1
Address range Modbus	1 255	246

Start Bits und Data Bits können nicht verändert werden.

Allgemeine Konfiguration des Hosts

Der Datenaustausch mit Status und Variablen zwischen Feldgerät und Host erfolgt über Register. Hierzu ist eine Konfiguration im Host erforderlich. Gleitkommazahlen mit einfacher Genauigkeit (4 Bytes) nach IEEE 754 werden mit frei wählbarer Anordnung der Datenbytes (Byte transmission order) übertragen. Diese "*Byte transmission order*" wird im Parameter "*Format Code*" festgelegt. Damit kennt die RTU die Register des VEGADIF 85, die für Variablen und Statusinformationen abzufragen sind.

Format Code	Byte transmission order
0	ABCD

²¹⁾ Bei Einsatz mit erfüllter Gehäuseschutzart.

Format Code	Byte transmission order
1	CDAB
2	DCBA
3	BADC

11.3 Modbus-Register

Holding Register

Die Holding-Register bestehen aus 16 bit. Sie können gelesen und beschrieben werden. Vor jedem Befehl wird die Adresse (1 Byte), nach jedem Befehl ein CRC (2 Byte) gesendet.

Register Name	Register Number	Туре	Configurable Values	Default Va- lue	Unit
Address	200	Word	1 255	246	-
Baud Rate	201	Word	1200, 2400, 4800, 9600, 19200, 38400, 57600	9600	-
Parity	202	Word	0 = None, 1 = Odd, 2 = Even	0	-
Stopbits	203	Word	1 = None, 2 = Two	1	-
Delay Time	206	Word	10 250	50	ms
Byte Oder (Floa- ting point format)	3000	Word	0, 1, 2, 3	0	-

Eingangsregister

Die Eingangsregister bestehen aus 16 bit. Sie können nur gelesen werden. Vor jedem Befehl wird die Adresse (1 Byte), nach jedem Befehl ein CRC (2 Byte) gesendet.

PV, SV, TV und QV können über den Sensor-DTM eingestellt werden.

Register Name	Register Number	Туре	Note
Status	100	DWord	Bit 0: Invalid Measurement Value PV
			Bit 1: Invalid Measurement Value SV
			Bit 2: Invalid Measurement Value TV
			Bit 3: Invalid Measurement Value QV
PV Unit	104	DWord	Unit Code
PV	106		Primary Variable in Byte Order CDAB
SV Unit	108	DWord	Unit Code
SV	110		Secondary Variable in Byte Order CDAB
TV Unit	112	DWord	Unit Code
TV	114		Third Variable in Byte Order CDAB
QV Unit	116	DWord	Unit Code
QV	118		Quarternary Variable in Byte Order CDAB

Register Name	Register Number	Туре	Note
Status	1300	DWord	See Register 100
PV	1302		Primary Variable in Byte Order of Register 3000
SV	1304		Secondary Variable in Byte Order of Register 3000
TV	1306		Third Variable in Byte Order of Register 3000
QV	1308		Quarternary Variable in Byte Order of Register 3000
Status	1400	DWord	See Register 100
PV	1402		Primary Variable in Byte Order CDAB
Status	1412	DWord	See Register 100
SV	1414		Secondary Variable in Byte Order CDAB
Status	1424	DWord	See Register 100
TV	1426		Third Variable in Byte Order CDAB
Status	1436	DWord	See Register 100
QV	1438		Quarternary Variable in Byte Order CDAB
Status	2000	DWord	See Register 100
PV	2002	DWord	Primary Variable in Byte Order ABCD (Big Endian)
SV	2004	DWord	Secondary Variable in Byte Order ABCD (Big Endian)
TV	2006	DWord	Third Variable in Byte Order ABCD (Big Endian)
QV	2008	DWord	Quarternary Variable in Byte Order ABCD (Big Endian)
Status	2100	DWord	See Register 100
PV	2102	DWord	Primary Variable in Byte Order DCBA (Little Endian)
SV	2104	DWord	Secondary Variable in Byte Order DCBA (Little Endian)
TV	2106	DWord	Third Variable in Byte Order ABCD DCBA (Little Endian)
QV	2108	DWord	Quarternary Variable in Byte Order DCBA (Little Endian)
Status	2200	DWord	See Register 100
PV	2202	DWord	Primary Variable in Byte Order BACD (Middle Endian)
SV	2204	DWord	Secondary Variable in Byte Order BACD (Middle Endian)
TV	2206	DWord	Third Variable in Byte Order BACD (Middle Endian)
QV	2208	DWord	Quarternary Variable in Byte Order BACD (Middle Endian)

Unit Codes for Register 104, 108, 112, 116

Unit Code	Measurement Unit	
1	in H2O	
2	in Hg	
3	ft H2O	

Unit Code	Measurement Unit
4	mm H2O
5	mm Hg
6	psi
7	bar
8	mbar
11	Pa
12	kPa
13	torr
32	°C
33	°F
40	US liq. gal.
41	L
42	Imp. Gal.
43	m3
44	ft
45	m
46	bbl
47	in
48	cm
49	mm
111	cyd
112	cft
113	cuin
237	MPa

11.4 Modbus RTU-Befehle

FC3 Read Holding Register

Mit diesem Befehl wird eine beliebige Anzahl (1-127) von Holding-Registern ausgelesen. Es werden das Startregister, ab welchem gelesen werden soll und die Anzahl der Register übertragen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x03
	Byte Count	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC4 Read Input Register

Mit diesem Befehl wird eine beliebige Anzahl (1-127) von Input Registern ausgelesen. Es werden das Startregister, ab welchem gelesen werden soll und die Anzahl der Register übertragen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	N*2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x04
	Byte Count	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC6 Write Single Register

Mit diesem Funktionscode wird in ein einzelnes Holding Register geschrieben.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x06
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	Data
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	2 Bytes	Data

FC8 Diagnostics

Mit diesem Funktionscode werden verschiedene Diagnosefunktionen ausgelöst oder Diagnosewerte ausgelesen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data

Umgesetzte Funktionscodes:

Sub Function Code	Name
0x00	Return Data Request
0x0B	Return Message Counter

Bei Sub-Funktionscode 0x00 kann nur ein 16-Bit-Wert geschrieben werden.

FC16 Write Multiple Register

Mit diesem Funktionscode wird in mehrere Holding Register geschrieben. Es kann in einer Anfrage nur in Register geschrieben werden, die unmittelbar aufeinanderfolgen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	0x0001 to 0x007B
	Byte Count	1 Byte	2*N
	Register Value	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	0x01 to 0x7B

FC17 Report Sensor ID

Mit diesem Funktionscode wird die Sensor ID am Modbus abgefragt.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x11
Response:	Function Code	1 Byte	0x11
	Byte Number	1 Byte	
	Sensor ID	1 Byte	
	Run Indicator Status	1 Byte	

FC43 Sub 14, Read Device Identification

Mit diesem Funktionscode wird die Device Identification abgefragt.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x2B
	МЕІ Туре	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Object ID	1 Byte	0x00 to 0xFF

	Parameter	Length	Code/Data
Response:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Confirmity Level	1 Byte	0x01, 0x02, 0x03, 0x81, 0x82, 0x83
	More follows	1 Byte	00/FF
	Next Object ID	1 Byte	Object ID number
	Number of Objects	1 Byte	
	List of Object ID	1 Byte	
	List of Object length	1 Byte	
	List of Object value	1 Byte	Depending on the Object ID

11.5 Levelmaster-Befehle

Der VEGADIF 85 ist ebenfalls gegeignet zum Anschluss an folgende RTUs mit Levelmaster-Protokoll. Das Levelmaster-Protokoll wird oft als "*Siemens-*" bzw. "*Tank-Protokoll*" bezeichnet.

RTU	Protocol
ABB Totalflow	Levelmaster
Kimray DACC 2000/3000	Levelmaster
Thermo Electron Autopilot	Levelmaster

Parameter für die Buskommunikation

Der VEGADIF 85 ist mit den Defaultwerten vorbelegt:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1,2	1
Address range Levelmaster	32	32

Den Levelmasterbefehlen liegt folgende Syntax zugrunde:

- Groß geschriebene Buchstaben stehen am Anfang bestimmter Datenfelder
- Klein geschriebene Buchstaben stehen für Datenfelder
- Alle Befehle werden mit "<cr>" (carriage return) abgeschlossen
- Alle Befehle beginnen mit "Uuu", wobei "uu" für die Adresse steht (00-31)
- "*" kann als Joker f
 ür jede Stelle in der Adresse ben
 ützt werden. Der Sensor wandelt dies immer in seine Adresse um. Bei mehr als einem Sensor darf der Joker nicht ben
 ützt werden, da sonst mehrere Slaves antworten
- Befehle, welche das Gerät ändern, schicken den Befehl mit anschließendem "*OK*" zurück. "*EE*-*ERROR*" ersetzt "*OK*", wenn es ein Problem beim Ändern der Konfiguration gab

Report Level (and Temperature)

i uiu	ameter	Length	Code/Data
Request: Repo perat	ort Level (and Tem- ature)	4 characters ASCII	Uuu?
Response: Repo perat	ort Level (and Tem- ature)	24 characters ASCII	UuuDIII.IIFtttEeeeeWwww uu = Address III.II = PV in inches ttt = Temperature in Fahrenheit eeee = Error number (0 no error, 1 le- vel data not readable) wwww = Warning number (0 no war-

PV in inches wird wiederholt, wenn "Set number of floats" auf 2 gesetzt wird. Es können somit 2 Messwerte übertragen werden. PV-Wert wird als erster Messwert übertragen, SV als 2. Messwert.

• Information:

Der max. zu übertragende Wert für den PV beträgt 999.99 inches (entspricht ca. 25,4 m).

Soll die Temperatur im Levelmaster Protokoll mit übertragen werden, so muss der TV im Sensor auf Temperatur gestellt werden.

PV, SV und TV können über den Sensor-DTM eingestellt werden.

Report Unit Number

	Parameter	Length	Code/Data
Request:	Report Unit Number	5 characters ASCII	U**N?
Response:	Report Level (and Temperature)	6 characters ASCII	UuuNnn

Assign Unit Number

	Parameter	Length	Code/Data
Request:	Assign Unit Number	6 characters ASCII	UuuNnn
Response:	Assign Unit Number	6 characters ASCII	UuuNOK
			uu = new Address

Set number of Floats

	Parameter	Length	Code/Data
Request:	Set number of Floats	5 characters ASCII	UuuFn
Response:	Set number of Floats	6 characters ASCII	UuuFOK

Wird die Anzahl auf 0 gesetzt, wird kein Füllstand mehr zurückgemeldet

Set Baud Rate

	Parameter	Length	Code/Data
Request:	Set Baud Rate	8 (12) characters ASCII	UuuBbbbb[b][pds]
			Bbbbb[b] = 1200, 9600 (default)
			pds = parity, data length, stop bit (optional)
			parity: none = N, even = E (default), odd = O
Response:	Set Baud Rate	11 characters ASCII	

Beispiel: U01B9600E71

Gerät an Adresse 1 ändern zu Baudrate 9600, Parität even, 7 Datenbits, 1 Stoppbit

Set Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Set Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms
Response:	Set Receive to Transmit Delay	6 characters ASCII	UuuROK

Report Number of Floats

	Parameter	Length	Code/Data
Request:	Report Number of Floats	4 characters ASCII	UuuF
Response:	Report Number of Floats	5 characters ASCII	UuuFn
			n = number of measurement values (0, 1 or 2)

Report Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Report Receive to Transmit Delay	4 characters ASCII	UuuR
Response:	Report Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms

Fehlercodes

Error Code	Name
EE-Error	Error While Storing Data in EEPROM
FR-Error	Erorr in Frame (too short, too long, wrong data)
LV-Error	Value out of limits

11.6 Konfiguration eines typischen Modbus-Hosts

Fisher ROC 809

Abb. 47: Anschluss des VEGADIF 85 an RTU Fisher ROC 809

- 1 VEGADIF 85
- 2 RTU Fisher ROC 809
- 3 Spannungsversorgung

Parameter für Modbus-Hosts

Parameter	Value Fisher ROC 809	Value ABB Total Flow	Value Fisher Thermo Elect- ron Autopilot	Value Fisher Bristol Control- Wave Micro	Value Scada- Pack
Baud Rate	9600	9600	9600	9600	9600
Floating Point Format Code	0	0	0	2 (FC4)	0
RTU Data Type	Conversion Code 66	16 Bit Modicon	IEE Fit 2R	32-bit registers as 2 16-bit re- gisters	Floating Point
Input Register Base Number	0	1	0	1	30001

Die Basisnummer der Input Register wird immer zur Input-Register-Adresse des VEGADIF 85 addiert.

Daraus ergeben sich folgende Konstellationen:

- Fisher ROC 809 Registeradresse für 1300 ist Adresse 1300
- ABB Total Flow Registeradresse für 1302 ist Adresse 1303
- Thermo Electron Autopilot Registeradresse für 1300 ist Adresse 1300
- Bristol ControlWave Micro Registeradresse f
 ür 1302 ist Adresse 1303
- ScadaPack Registeradresse f
 ür 1302 ist Adresse 31303

11.7 Berechnung der Gesamtabweichung

Die Gesamtabweichung eines Druckmessumformers gibt den maximal zu erwartenden Messfehler in der Praxis an. Sie wird auch max. praktische Messabweichung oder Gebrauchsfehler genannt.

Nach DIN 16086 ist die Gesamtabweichung F_{total} die Summe aus Grundabweichung F_{perf} und Langzeitstabilität F_{stab} :

 $F_{total} = F_{perf} + F_{stab}$

Die Grundabweichung F_{perf} wiederum setzt sich aus der thermischen Änderung von Nullsignal und Ausgangsspanne F_{τ} (Temperaturfehler) sowie der Messabweichung $F_{\kappa r}$ zusammen:

 $F_{port} = \sqrt{((F_T)^2 + (F_{KI})^2)}$

Die thermische Änderung von Nullsignal und Ausgangsspanne F_T wird in Kapitel "Technische Daten" angegeben.

Dies gilt zunächst für den digitalen Signalausgang über HART, Profibus PA, Foundation Fieldbus oder Modbus.

Beim 4 ... 20 mA-Ausgang kommt noch die thermische Änderung des Stromausganges F, dazu:

 $F_{perf} = \sqrt{((F_T)^2 + (F_K)^2 + (F_c)^2)}$

Zur besseren Übersicht sind hier die Formelzeichen zusammengefasst:

- F_{total}: Gesamtabweichung
- F_{perf}: Grundabweichung F_{stab}: Langzeitstabilität
- F₁: Thermische Änderung von Nullsignal und Ausgangsspanne (Temperaturfehler)
- F_k: Messabweichung
- F.: Thermische Änderung des Stromausganges
- FMZ: Zusatzfaktor Messzellenausführung
- FTD: Zusatzfaktor Turn Down

11.8 Berechnung der Gesamtabweichung - Praxisbeispiel

Daten

Differenzdruck 250 mbar (25 KPa), Mediumtemperatur an der Messzelle 60 °C

VEGADIF 85 mit Messbereich 500 mbar

Die erforderlichen Werte für Temperaturfehler F_T, Messabweichung F_{KI} und Langzeitstabilität F_{erb} werden den technischen Daten entnommen.

1. Berechnung des Turn Down

TD = 500 mbar/250 mbar

TD = 2:1

2. Ermittlung Temperaturfehler F₊

Messbereich	-10 +60 °C / +14 +140 °F	-4010 °C / -40 +14 °F und +60 +85 °C /+140 +185 °F
10 mbar (1 kPa)/0.145 psi	< ±0,15 % + 0,20 % x TD	< ±0,4 % + 0,3 % x TD
30 mbar (3 kPa)/0.44 psi	< ±0,15 % + 0,10 % x TD	< ±0,2 % + 0,15 % x TD
100 mbar (10 kPa)/1.5 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,2 % x TD
500 mbar (50 kPa)/7.3 psi		< ±0,2 % + 0,06 % x TD
3 bar (300 kPa)/43.51 psi	< ±0,15 % + 0,05 % X TD	
16 bar (1600 kPa)/232.1 psi	< ±0,15 % + 0,15 % x TD	< ±0,15 % + 0,20 % x TD

 $F_{\tau} = 0,15 \% + 0,05 \% \times TD$

 $F_{T} = 0,15 \% + 0,1 \%$

3. Ermittlung Messabweichung und Langzeitstabilität

Messabweichung

Messbereich	TD 1 : 1 bis 5 : 1	TD > 5 : 1	TD > 10 : 1	
10 mbar (1 kPa)/0.145 psi	< ±0,1 %	< ±0,02 % x TD		
30 mbar (3 kPa)/0.44 psi				
100 mbar (10 kPa)/1.5 psi				
<mark>500 mbar (50 kPa)/7.3 psi</mark>			$<\pm(0,035\%\pm0,01\%)$ X 1D	
3 bar (300 kPa)/43.51 psi	< ±0,0		< ±(0,015 % + 0,005 %) x TD	
16 bar (1600 kPa)/232.1 psi			< ±(0,035 % + 0,01 %) x TD	

Langzeitstabilität

Magagröße	Zeitbereich		
Messgrobe	1 Jahr	5 Jahre	10 Jahre
Differenzdruck ²²⁾	<mark>< 0,065 % x TD</mark>	< 0,1 % x TD	< 0,15 % x TD
Statischer Druck ²³⁾	< ±0,065 %	< ±0,1 %	< ±0,15 %

4. Berechnung der Gesamtabweichung - digitales Ausgangssignal

- 1. Schritt: Grundgenauigkeit F_{nerf}

$$\begin{split} F_{perf} &= \sqrt{((F_T)^2 + (F_{Kl})^2)} \\ F_T &= 0,25 \% \\ F_{Kl} &= 0,065 \% \\ F_{perf} &= \sqrt{(0,25 \%)^2 + (0,065 \%)^2)} \\ F_{perf} &= 0,26 \% \\ \textbf{- 2. Schritt: Gesamtabweichung F}_{total} \\ F_{total} &= F_{perf} + F_{stab} \\ F_{perf} &= 0,26 \% (Ergebnis aus Schritt 1) \\ F_{stab} &= 0,065 \% \times TD \\ F_{stab} &= 0,065 \% \times 2 \\ F_{stab} &= 0,13 \% \\ F_{total} &= 0,26 \% + 0,13 \% = 0,39 \% \end{split}$$

Die prozentuale Gesamtabweichung der Messung beträgt somit 0,39 %. Die absolute Gesamtabweichung beträgt 0,39 % von 250 mbar = 1 mbar

Das Beispiel zeigt, dass der Gebrauchsfehler in der Praxis deutlich höher sein kann, als die eigentliche Messabweichung. Ursachen sind Temperatureinfluss und Turn Down.

11.9 Maße, Ausführungen Prozessbaugruppe

Die folgenden Maßzeichnungen stellen nur einen Ausschnitt der möglichen Ausführungen dar. Detaillierte Maßzeichnungen können auf <u>www.vega.com</u> unter "*Downloads*" und "*Zeichnungen*" heruntergeladen werden.

```
<sup>22)</sup> Bezogen auf die eingestellte Messspanne.
```

²³⁾ Bezogen auf den Messbereichsendwert.

Gehäuse

Abb. 48: Maße Gehäuse - mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in bzw. 18 mm/0.71 in

1 Kunststoff-Zweikammer

2 Aluminium-/Edelstahl-Zweikammer

Entlüftung auf Prozessachse

Abb. 49: VEGADIF 85, Entlüftung auf Prozessachse

Anschluss	Befestigung	Werkstoff	Lieferumfang					
1/4-18 NPT, IEC 61518	7/16-20 UNF	316L	inkl. 9 Entlüftungeventilen					
1/4-18 NPT, IEC 61518	7/16-20 UNF	Alloy C276 (2.4819)	Inki. 2 Endunungsvendien					
1/4-18 NPT, IEC 61518	7/16-20 UNF	Super Duplex (2.4410)	ohne					

Entlüftung seitlich

Abb. 50: VEGADIF 85, Entlüftung seitlich

Anschluss	Befestigung	Werkstoff	Lieferumfang				
1/4-18 NPT, IEC 61518	7/16-20 UNF	316L	inkl. 4 Verschluss- schrauben und 2 Entlüftungsventilen				
1/4-18 NPT, IEC 61518	7/16-20 UNF	Alloy C276 (2.4819)					

Ovalflansch, vorbereitet für Druckmittleranbau

Abb. 51: links: Prozessanschluss VEGADIF 85 vorbereitet für den Druckmittleranbau. Rechts: Lage der Kupferringdichtung

- 1 Druckmittleranbau
- 2 Kupferringdichtung
- 3 Trennmembran

11.10 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see <u>www.vega.com</u>.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web <u>www.vega.com</u>.

Линии продукции фирмы BEГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<<u>www.vega.com</u>。

11.11 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

											ن س
											3571-DE
											-23080-

											ن س
											3571-DE
											-23080-

Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.

Änderungen vorbehalten

CE

53571-DE-230804

© VEGA Grieshaber KG, Schiltach/Germany 2023

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Deutschland

Telefon +49 7836 50-0 E-Mail: info.de@vega.com www.vega.com