Safety Manual

VEGATRENN 141, 142

With SIL qualification

Document ID: 52434

Contents

1	Docu	ment language	. 3
2	Scop	e	. 4
	2.1	Instrument version	
	2.2 2.3	Application area SIL conformity	
3		ning	
3	3.1	Safety function	
	3.2	Safe state	
	3.3	SIL2 application for 1oo1 architecture	
	3.4	SIL3 application for 1002 architecture	
	3.5	Prerequisites for operation	
4	Safet	y-related characteristics	
	4.1	Characteristics acc. to IEC 61508 for 1001 architecture	
	4.2 4.3	Characteristics acc. to ISO 13849-1	
	4.3 4.4	Supplementary information	
5	Sotu	· · · · · · · · · · · · · · · · · · ·	
5	5.1	General information	
	5.2	Adjustment instructions	
6	Diag	nostics and servicing	
0	6.1	Behaviour in case of failure	
	6.2	Repair	
7	Proo	test	1/
'	7.1	General information	
	7.2	Test 1 - with input current simulation	
8	Арре	ndix A - Test report	15
9	Арре	ndix B - Term definitions	16
10	Supp	lement C - SIL conformity	17

1 Document language

DE	Das vorliegende <i>Safety Manual</i> für Funktionale Sicherheit ist verfügbar in den Sprachen Deutsch, Englisch, Französisch und Russisch.
EN	The current <i>Safety Manual</i> for Functional Safety is available in German, English, French and Russian language.
FR	Le présent <i>Safety Manual</i> de sécurité fonctionnelle est disponible dans les langues suivantes: allemand, anglais, français et russe.
RU	Данное руководство по функциональной безопасности Safety Manual имеется на немецком, английском, французском и русском языках.

2 Scope

2.1 Instrument version

This safety manual applies to the separators

VEGATRENN 141, 142

Valid versions:

• HW Ver 1.0.0 to 1.01

2.2 Application area

The instruments VEGATRENN 14* are used for voltage supply of 4 \dots 20 mA/HART sensors in two-wire version where the measured value is output in a galvanically separated current loop.

With suitable transmitters, the VEGATRENN 14* can be used for level detection or range monitoring in a safety-related system according to IEC 61508 in the modes *low demand mode* or *high demand mode*.

Due to the systematic capability SC3 this is possible up to:

- SIL2 in single-channel architecture
- SIL3 in multiple channel architecture

SIL The HART interface must not be used to output the measured value.

2.3 SIL conformity

The SIL confirmity was judged and certified independently by $T\ddot{U}V$ *Rheinland* according to IEC 61508:2010 (Ed.2) (verification documents see " Supplement").

The certificate is valid for the entire service life of all instruments that were sold before the certificate expired!

	3 Planning
Safety function	3.1 Safety function The intrinsically safe current of the transmitters in Ex areas is detected and provided on the non-intrinsically safe output for further processing.
Safety tolerance	For the design of the safety function, the following aspect must be taken into account with regard to the tolerances: Due to undetected failures in the range between 3.8 mA and 20.5 mA, an incorrect output signal can be generated which deviates from the real measured value by up to 2 %
Safe state	3.2 Safe state The safe state of the current output depends on the safety function perceived by the connected transmitter.
Fault signal in case of malfunction	Possible fault currents: • ≤ 3,6 mA ("fail low") • > 21 mA ("fail high")
SIL2 qualification	 3.3 SIL2 application for 1oo1 architecture SIL2 can be reached through a single-channel architecture consisting of: a VEGATRENN 141 or a VEGATRENN 142, where one of the channels is used for the safety function
SIL3 application	3.4 SIL3 application for 1002 architecture SIL3 can be reached through a double-channel architecture consisting of:

- two VEGATRENN 141 or
- a VEGATRENN 142, where two channels is used redundantly for the safety function acc. to the following procedure:

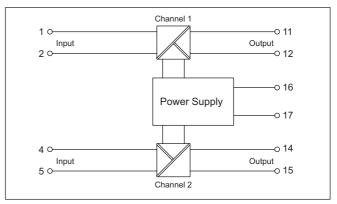


Fig. 1: SIL3 application for 1002 architecture

If VEGATRENN 142 is used, then the failure rates "*Power Supply*" are influencing the PFD calculation as 1001 share and the failure rates "*OneChannel*" as 1002 share.

In any case, "failures caused by hardware due to common cause" must be taken into account.

Number values see chapter " Safety-related characteristics".

3.5 Prerequisites for operation

- The measuring system should suit the application. The applicationspecific limits must be maintained
- The specifications according to the operating instructions manual, particularly the current load on the output circuits, must be kept within the specified limits
- The installation site must comply with IP54 protection
- All parts of the measuring chain must correspond to the planned " Safety Integrity Level (SIL)"

Boundary conditions relating to transmitters The transmitter used, must output an error current if it is powered by a voltage outside its voltage range.

Boundary conditions relating to the configuration of the processing unit

A connected control and processing unit must have the following properties:

- The failure signals of the measuring system are judged according to the idle current principle
- " fail low" and " fail high" signals are interpreted as a failure, whereupon the safe state must be taken on

If this is not the case, the respective percentages of the failure rates must be assigned to the dangerous failures and the values stated in chapter *Safety-related characteristics*["] redetermined!

Configuration of the processing unit for the 1002 architecture

A connected control and processing unit must compare the measured
 values of the two channels up to max. 2 % difference. The safe state
 must be taken on in case of a higher difference.

Instructions and restrictions

For instruments with UL or CSA approval, an overvoltage arrester must be connected with networks of overvoltage category III and supply voltages of more than 150 V.

4 Safety-related characteristics

4.1 Characteristics acc. to IEC 61508 for 1001 architecture

VEGATRENN 141

1001 architectures, see chapter " SIL2 application for 1001 architecture"

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture ¹⁾
Hardware fault tolerance	HFT = 0
Instrument type	Туре А
Mode	Low demand mode, High demand mode
SFF	> 60 %
MTBF ²⁾	1.71 x 10 ⁶ h (195 years)

Failure rates

λ _s	$\lambda_{_{DD}}$	λ _{DU}	λ _H	λ _L
30 FIT	45 FIT	43 FIT	6 FIT	210 FIT

For calculation of PFD_{AVG}, the failure rates λ_H and λ_L are assigned to category λ_{DD} .

PFD _{AVG}	0.021 x 10 ⁻²	(T1 = 1 year)
PFD _{AVG}	0.040 x 10 ⁻²	(T1 = 2 years)
PFD _{AVG}	0.096 x 10 ⁻²	(T1 = 5 years)
PFH	0.043 x 10 ⁻⁶ 1/h	

Proof Test Coverag (PTC)

Test type ³⁾	Remaining failure rate of dangerous unde- tected failures	РТС
Test 1	0 FIT	99 %

One channel of VEGATRENN 142

Parameter	Value
Safety Integrity Level	SIL2 in single-channel architecture
	SIL3 in multiple channel architecture 4)
Hardware fault tolerance	HFT = 0
Instrument type	Туре А

52434-EN-210505

¹⁾ Homogeneous redundancy possible, because systematic capability SC3.

- ²⁾ Including errors outside the safety function.
- ³⁾ See section "Proof test".
- ⁴⁾ Homogeneous redundancy possible, because systematic capability SC3.

Parameter	Value
Mode	Low demand mode, High demand mode
SFF	> 60 %
MTBF ⁵⁾	1.78 x 10 ⁶ h (204 years)

Failure rates

λ _s	$\lambda_{_{DD}}$	$\lambda_{_{DU}}$	λ _H	λ
32 FIT	23 FIT	43 FIT	6 FIT	199 FIT

For calculation of $\text{PFD}_{\text{AVG}},$ the failure rates λ_{H} and λ_{L} are assigned to category $\lambda_{\text{DD}}.$

PFD _{AVG}	0.021 x 10 ⁻²	(T1 = 1 year)
PFD _{AVG}	0.040 x 10 ⁻²	(T1 = 2 years)
PFD _{AVG}	0.096 x 10 ⁻²	(T1 = 5 years)
PFH	0.043 x 10 ⁻⁶ 1/h	

Proof Test Coverag (PTC)

Test type ⁶⁾	Remaining failure rate of dangerous unde- tected failures	PTC
Test 1	0 FIT	99 %

4.2 Characteristics acc. to ISO 13849-1

The VEGATRENN 14* has been manufactured and verified using principles that demonstrate its suitability and reliability for safety-related applications. It can therefore be considered a "*proven component*" according to DIN EN ISO 13849-1.

VEGATRENN 141 Derived from the safety-related characteristics, the following figures result according to ISO 13849-1 machine safety): ⁷⁾

Parameter	Value
MTTFd	379 years
DC	Average
Category	Cat. 2

One channel of VEGATRENN 142

Derived from the safety-related characteristics, the following figures result according to ISO 13849-1 machine safety): $^{\rm s)}$

Parameter	Value
MTTFd	421 years

- ⁵⁾ Including errors outside the safety function.
- 6) See section "Proof test".
- ⁷⁾ ISO 13849-1 was not part of the certification of the instrument.
- ⁸⁾ ISO 13849-1 was not part of the certification of the instrument.

Parameter	Value
DC	Low
Kategorie	Cat. 2

4.3 Characteristics acc. to IEC 61508 for 1002 architecture

VEGATRENN 142

Scheme for the 1002 architecture of VEGATRENN 142, see chapter " SIL3 application for 1002 architecture"

Parameter	Power supply	OneChannel	1002 architec- ture
SIL	SIL2 / SIL3	SIL2	SIL3
HFT	HFT = 0	HFT = 1	
Instrument type	Туре А	Туре А	Туре А
Mode	Low demand mo	de, High demand	mode
SFF	100 %	82 %	
MTBF ⁹⁾	1.0 x 10 ⁶ h (113 y	/ears)	
λ _s	0 FIT	30 FIT	
λ _{DD}	1 FIT	22 FIT	
λ _{DU}	0 FIT	43 FIT	
λ _H	0 FIT	6 FIT	
λ	59 FIT	140 FIT	
PFD _{AVG} (T1 = 1 year)	0.05 x 10 ⁻⁵	1.04 x 10 ⁻⁵	1.09 x 10 ⁻⁵
PFD _{AVG} (T1 = 2 years)	0.05 x 10 ⁻⁵	1.99 x 10⁻⁵	2.04 x 10 ⁻⁵
PFD _{AVG} (T1 = 5 years)	0.06 x 10 ⁻⁵	4.89 x 10⁻⁵	4.95 x 10⁻⁵
PFH	0.005 x 10 ⁻⁹ 1/h	2.17 x 10 ⁻⁹ 1/h	2.18 x 10 ⁻⁹ 1/h
PTC			99 %



The specified characteristics apply to the SIL application described in section 3.4 if the two channels of VEGATRENN 142 are used. Requirement is that the connected control and processing unit compares the measured values of the two channels to max. 2 % difference.

For calculation of SFF, PFD_{_{AVG}} and PFH, the failure rates $\lambda_{_{H}}$ and $\lambda_{_{L}}$ are assigned to category $\lambda_{_{DD}}$

The characteristics $\mathsf{PFD}_{\mathsf{AVG}}$ and PFH for the 10o2 architecture are the result of the addition of the values of "Power Supply" and "OneChannel".

⁹⁾ Including errors outside the safety function.

	4.4 Supplementary information
Determination of the failure rates	The failure rates of the instruments were determined by an FMEDA according to IEC 61508. The calculations are based on failure rates of the components according to SN 29500 :
	All figures refer to an average ambient temperature of 40 °C (104 °F) during the operating time. For higher temperatures, the values should be corrected:
	 Continuous application temperature > 50 °C (122 °F) by factor 1.3 Continuous application temperature > 60 °C (140 °F) by factor 2.5
	Similar factors apply if frequent temperature fluctations are expected.
Assumptions of the FMEDA	 The failure rates are constant. Take note of the useful service life of the components according to IEC 61508-2. Multiple failures are not taken into account Wear on mechanical parts is not taken into account Failure rates of external power supplies are not taken into account The environmental conditions correspond to an average industrial environment
Calculation of PFD _{AVG}	The values for PFD_{AVG} specified above were calculated as follows for a 1001 architecture:
	$PFD_{AVG} = \frac{PTC \times \lambda_{DU} \times T1}{2} + \lambda_{DD} \times MTTR + \frac{(1 - PTC) \times \lambda_{DU} \times LT}{2}$
	Parameters used:
	 T1 = Proof Test Interval PTC = 99 %
	• LT = 10 years
	• MTTR = 8 h
Calculation of PFD _{Avg} and PFH for the 1002 archi- tecture	The characteristics for the share "OneChannel" are calculated as follows:
	- PFD _{AVG} acc. to IEC 61508-6, B.3.2.5
	- PFH acc. to IEC 61508-6, B.3.3.2.2
	 Parameters used: T1 = Proof Test Interval
	 PTC = 99 %
	• $T2 = LT = 10$ years • MTTR = MRT = 8 h • $\beta = \beta_p = 5 \%$
Multiple channel archi- tecture	Due to the systematic capability SC3, this instrument can also be used in multiple channel systems up to SIL3, also with a homogene- ously redundant configuration.
	The safety-related characteristics must be calculated especially for the selected structure of the measuring chain using the stated failure rates. In doing this, a suitable Common Cause Factor (CCF) must be considered (see IEC 61508-6, appendix D).

5 Setup

5.1 General information

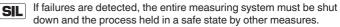
Mounting and installation

Take note of the mounting and installation instructions in the operating instructions manual.

Setup must be carried out under process conditions.

5.2 Adjustment instructions

Adjustment elements


There are no adjustment elements available.

6 Diagnostics and servicing

6.1 Behaviour in case of failure

When a malfunction was detected, a fault signal is output on the current output (see section " *Safe state*").

The manufacturer must be informed of the occurrence of a dangerous undetected failure (incl. fault description).

6.2 Repair

Defective instruments can only be repaired by the manufacturer.

7 Proof test

7.1 General information

Objective	To identify possible dangerous, undetected failures, the safety function must be checked by a proof test at adequate intervals. It is the user's responsibility to choose the type of testing. The time intervals are determined by the selected PFD_{AVG} (see chapter " <i>Safety-related characteristics</i> ").
	For documentation of these tests, the test protocol in the appendix can be used.
	If one of the tests proves negative, the entire measuring system must be switched out of service and the process held in a safe state by means of other measures.
	In a multiple channel architecture this applies separately to each channel.
Preparation	 Determine safety function (mode, switching points) If necessary, remove the instruments from the safety chain and maintain the safety function by other means
Unsafe device status	Warning: During the function test, the safety function must be treated as unreli- able. Take into account that the function test influences downstream connected devices.
	If necessary, you must take other measures to maintain the safety function.
	After the function test, the status specified for the safety function must be restored.
	7.2 Test 1 - with input current simulation
Conditions	Possibility of sensor current simulation existsOutput signals correspond to the current process variable
Procedure	1. Simulate the currents ≤ 3.6 mA, 4 mA, 12 mA, 20 mA, > 21 mA on the sensor input
	2. Check output current
Expected result	The output current corresponds to the simulated input currents (toler- ances see operating instructions)
Proof Test Coverage	See Safety-related characteristics

8 Appendix A - Test report

Identification	
Company/Tester	
Plant/Instrument TAG	
Meas. loop TAG	
Instrument type/Order code	
Instrument serial number	
Date, setup	
Date, last function test	

Test reason	
()	Setup
()	Proof test

Operating mode channel 1		Opera	ating mode channel 2
()	Max.	()	Max.
()	Min.	()	Min.
() Range monitoring		()	Range monitoring

Test result				
Test point	Real value channel 1	Test result	Real value channel 2	Test result
≤ 3.6 mA				
4 mA				
12 mA				
20 mA				
> 21 mA				

Confirmation	
Date:	Signature:

Abbreviations

9 Appendix B - Term definitions

SIL	Safety Integrity Level (SIL1, SIL2, SIL3, SIL4)
SC	Systematic Capability (SC1, SC2, SC3, SC4)
HFT	Hardware Fault Tolerance
SFF	Safe Failure Fraction
PFD _{AVG}	Average Probability of dangerous Failure on Demand
PFH	Average frequency of a dangerous failure per hour (Ed.2)
FMEDA	Failure Mode, Effects and Diagnostics Analysis
FIT	Failure In Time (1 FIT = 1 failure/ 10^9 h)
λ_{SD}	Rate for safe detected failure
$\lambda_{_{SU}}$	Rate for safe undetected failure
λ_s	$\lambda_{\rm S} = \lambda_{\rm SD} + \lambda_{\rm SU}$
λ_{DD}	Rate for dangerous detected failure
λ_{DU}	Rate for dangerous undetected failure
λ _H	Rate for failure, who causes a high output current (> 21 mA)
λ_{L}	Rate for failure, who causes a low output current (\leq 3.6 mA)
λ_{AD}	Rate for diagnostic failure (detected)
$\lambda_{_{AU}}$	Rate for diagnostic failure (undetected)
DC	Diagnostic Coverage
PTC	Proof Test Coverage (Diagnostic coverage for manual proof tests)
T1	Proof Test Interval
LT	Useful Life Time
MTBF	Mean Time Between Failure = MTTF + MTTR
MTTF	Mean Time To Failure
MTTR	IEC 61508, Ed1: Mean Time To Repair
	IEC 61508, Ed2: Mean Time To Restoration
MTTF _d	Mean Time To dangerous Failure (ISO 13849-1)
PL	Performance Level (ISO 13849-1)

10 Supplement C - SIL conformity

Certificate

Nr./No.: 968/FSP 1256.01/20

Prüfgegenstand Product tested	Speisetrenner für 420mA Sensoren Separator for 420mA Sensors	Zertifikats- inhaber Certificate holder	VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany
Typbezeichnung Type designation	VEGATRENN 141, VEGATRENN 142		
Prüfgrundlagen Codes and standards	IEC 61508 Parts 1-7:2010	IEC 61010-1:2	017
Bestimmungsgemäße Verwendung Intended application	Die Speisetrenner VEGATRENN 141/142 gemäß IEC 61508 und können in einem si - bis SLI 2 (VEGATRENN 141/14 oder 142) Die Produkte wurden auch in Bezug auf di IEC 61511-1:2017 überprüft und können in verwendet werden. The Separators VEGATRENN 141/142 co IEC 61508 and can be used in a safety-rei - up to SLI 2 (VEGATRENN 141 or 142) (- up to SLI 2 Wehn using the 2 channels of 141 or 142 The products were also reviewed in refere applicable during a type examination and of	cherheitsbezogenen HFT=0) bzw. les VEGATRENN 14 e anwendaren Anfor m Anwendungsberei omply with the requir ated system: HT=0) resp. VEGATRENNN 142 nce to the requirement	System eingesetzt werden: 12 alternativ 2x VEGATRENN derungen der ch der IEC 61511-1:2017 aments of SIL 2 / SC 3 acc. to 2, alternatively 2x VEGATRENN mts of IEC 61511-1:2017
Besondere Bedingungen Specific requirements	Die zugehärigen Betriebsantleitungen und Ausgangsströme <3,6mA und >21 mA müs Fehler behandelt werden. In SIL 3 Anwene verglichen und Unterschiede 22% müssen The operating instructions auf the safety n Output currents <3.6mA and >21 mA have as a failure condition. In SIL 3 applications compared and a deviation of 2 2% has to t	ssen von dem nachg dungen müssen die s als Fehler behande nanual shall be cons to be considered by the currents of the t	
Gültig bis / Valid until 2025-09-03			Stein, 5
vom 03.09.2020 dokumentiert sin Dieses Zertifikat ist nur gültig für B The issue of this certificate is base Report No. 968/FSP 1256.01/20 d	Erzeugnisse, die mit dem Prüfgegenstar ed upon an examination, whose results	nd übereinstimmer are documented ir	Am Grae 66-1539
٢	ÜV Rheinland Industrie Serv	ice GmbH	ustrie S 790, Fc
	Bereich Automation		d Indu
1/=l= 0000 00 00	Funktionale Sicherheit Am Grauen Stein, 51105 K		
Köln, 2020-09-03	Certification Body Safety & Security for Autom		DiplIng. Gebhard Bouwer
			E E

www.fs-products.com www.tuv.com

10/222 12, 12 E A4 @ TUV, TUEV and TUV are registered trademarks. Utilisation and application requires prior approval.

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2021

CE

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany

Phone +49 7836 50-0 E-mail: info.de@vega.com www.vega.com